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Abstract—Memory access instructions with auto-addressing
modes are prevalent in various Instruction Set Architectures
(ISAs), yet their use in compilers remains limited. Existing
methods address code optimization in one of two ways: they
either focus on reducing code size, but are constrained to basic
block-level optimizations and may not fully exploit architectural
benefits, or they optimize loop performance, often neglecting the
advantages of post-increment instructions and focusing primarily
on innermost loops while leaving outer loops unoptimized.

To address these shortcomings and meet the needs of real-
world Machine Learning (ML) applications, we introduce Pos-
tiz, a novel post-increment loop optimization technique. Postiz
extends post-increment optimizations beyond traditional limits,
incorporating enhancements for inner loops, cross-loop regions,
and nested loop structures. Through a profitability analysis, Postiz
optimizes code judiciously, leveraging architectural advantages
and reducing code size without compromising improvement made
by other optimizations.

Our experiments show that Postiz is effective, achieving
an optimization coverage of 98.04% on MobileNet and BERT
benchmarks. In comparison to default LLVM optimization,
Postiz generates approximately four times more post-increment
instructions. Moreover, it reduces code size by an average of
9.45% across various platforms. These improvements represent
significant advancements over current methods, showcasing Pos-
tiz’s potential to enhance compiler optimizations in a meaningful
way.

Index Terms—compiler, optimization, auto-addressing, post-
increment, loop strength reduce, domain-specific architecture

I. INTRODUCTION

Many Instruction Set Architectures (ISA) of existing proces-
sors incorporate a variety of memory access instructions with
diverse addressing modes. One such mode that has garnered
attention is the auto-addressing mode, where the memory
access is combined with address computation within the same
instruction.

Despite its potential for simple micro-architecture imple-
mentation, the effective utilization of auto-addressing instruc-
tions by compilers has remained limited. Most compilers
focused on simple local optimizations, which converting mem-
ory accesses and their corresponding address calculations
into single auto-addressing instructions within straight-line
code. A major factor restricting the expanded use of auto-
addressing mode is that auto-addressing code does not offer
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performance advantages on super-scalar machines with out-
of-order execution pipelines. Consequently, auto-addressing
optimization, which is commonly regarded as a code-size
optimization method in many architectures, has not kept pace
with modern compiler infrastructure developments.

However, within the domain of Digital Signal Processing
(DSP) systems, sometimes with stringent code size constraints,
presents a compelling use case for aggressive auto-addressing
optimizations. Many previous researches aimed to maximize
auto-addressing instruction utilization through solutions to the
NP-complete problems, including Simple Offset Assignment
(SOA) and General Offset Assignment (GOA) [2]. But their
heuristic approaches often incurred costs far from optimal
[10]. Moreover, these methods assume some register pre-
assignment, rendering long live-ranges of the address registers
and neglecting trade-offs between auto-addressing and other
addressing modes.

Another weakness of all existing auto-addressing opti-
mization approaches lies in the unexplored optimization op-
portunities beyond basic block scope. Particularly, in this
work, we identified untapped potential within loop structures,
particularly those found in Machine Learning (ML) kernels,
applicable to both scalar and Single-Instruction-Multiple-Data
(SIMD) vector extensions. By converting memory accesses
inside loop structures to auto-addressing mode, it is possible
to reduce code size across different architectures.

Nevertheless, when it comes to the address computation
within loops, the traditional focus of optimization techniques,
such as Loop Strength Reduction (LSR), which utilizes the
mathematical tool Scalar Evolution [22] to formalize induction
variable address computation, aims to minimize register usage
for improved efficiency within innermost loops. However,
this emphasis does not consider code size as a metric and
sometimes misses optimization opportunities for exploiting
hardware features and reducing the code size of outer loops.

In response, we present a novel loop transformation method,
called ”Postiz”. This technique leverages post-increment in-
structions within nested loops, commonly found in machine
learning scenarios, to address both the practical application of
post-increment addressing and the code size optimization op-
portunities. Postiz enhances existing straight-line optimizers by
applying post-increment transformations across loop regions



Table I: ISA Support for Different Auto-Addressing Categories Across Various Architectures

Vendor Architecture SIMD Ext.
Pre-increment Post-increment

NoteScalar Vector Scalar Vector

IBM POWER Altivec × × ✓† × General Purpose, Servers
ARM ARM/AArch64 NEON ✓ ✓ ✓ ✓ General Purpose, Embedded

Motorola M68k - ✓ × ✓ × Embedded, Legacy
Microchip AVR - ✓ × ✓ × Embedded, Industrial Control

TI TMS320 - ✓ × ✓ × DSP, Telecommuication
ADI Blackfin EPIS × × ✓ × DSP, Embedded

† Only value-strided is supported

Note: if not specified, value-
strided and register-strided modes
are both supported.
Note: value-stride may be limited
to one or more fixed values.
Note: pre-decrement and post-
decrement modes are treated as
variants of pre-increment and
post-increment modes.

and nests. Additionally, a profitability assessment process
ensures that Postiz is applied only when necessary, enabling
effective trade-offs with other optimizations like LSR. Bench-
marking Postiz against MobileNet [9] and BERT [6], which are
models used for machine learning, demonstrates the significant
code size reduction compared to LLVM existing straight-line
optimizations, both in AArch64 and in our domain-specific
architecture (DSA) hardware for ML workload accelerating.

We conclude our contribution below:
• We investigated the advantageous application of auto-

addressing instructions to loops, extending beyond con-
ventional optimization boundaries.

• We designed and implemented the novel loop opti-
mization method Postiz within LLVM, generating post-
increment code by analyzing nested loops. Notably, it
achieves an optimization coverage of 98.04% on Mo-
bileNet and BERT benchmarks, generates approximately
four times more post-increment instructions than LLVM
default, and reduces code size by an average of 9.45%
across various platforms. These results represent a sig-
nificant advancement compared to existing LLVM auto-
addressing optimizations.

• We devised a profitability analysis that selectively invokes
the post-increment transformation based on different met-
rics, ensuring optimization only when warranted.

The subsequent chapters of this paper are structured as fol-
lows: In Chapter II, we provide background on auto-addressing
mode and outline our motivation for Postiz. Chapter III details
the overall workflow, including the memory address analysis,
profitability assessment, post-increment transformation, and
more. Experimental settings and results are presented in Chap-
ter IV, followed by a discussion of related work in Chapter V.
We conclude in Chapter VI.

II. BACKGROUND AND MOTIVATION

A. Memory Accesses: The Auto-Addressing Mode

Compared to other memory access modes, auto-addressing
enables memory access instructions to modify the register in
parallel with memory accesses. While it is less flexible for
random memory addressing, auto-addressing is particularly
well-suited for sequential memory access scenarios, since it
does not cost extra instruction to recompute the addresses.

We categorize auto-addressing instructions based on differ-
ent traits that influence their behaviors:

• Pre-Increment vs. Post-Increment: Dictated by the or-
der of memory address computation and modification,
pre-increment addressing alters the address register be-
fore address computation while post-increment does the
reverse.

• Value-Strided vs. Register-Strided: Value-strided in-
structions adjust memory addresses based on a compile-
time known stride value embedded within the instruc-
tion. In contrast, register-strided mode utilizes a register
operand for address modification, accommodating larger
or runtime-defined values.

• Scalar-Based vs. Vector-Based: Scalar-based addresses
single data elements, while vector-based suits SIMD data
types, functioning on larger vectors.

As investigated, the detailed ISA support by different ven-
dors and architectures are listed in Table I. It is observed
that auto-addressing is widely supported by processors used in
general purposes, embedded, and DSP areas. The most widely
supported auto-addressing category is the post-addressing,
scalar-based auto-addressing mode. As SIMD architectures
dominate the exploitation of instruction-level parallelism (ILP)
in many parallel programs, some ISAs with vector extensions,
such as Arm NEON, also feature the vector-based auto-
addressing mode.

In this work, we emphasize generating code for memory
access instructions using the post-increment addressing mode.
We utilize either the value-strided or register-strided mode to
meet distinct needs, primarily catering to ML kernel functions
that are highly likely to be vectorized.

B. Merits of Post-Increment Addressing

Although supported by various hardware, the utilization of
auto-addressing instructions is quite limited. As programming
languages like C do not provide direct abstractions for auto-
addressing, these instructions are typically generated by the
compiler, usually as a result of specific optimizations.

One direct compiler optimization to generate auto-
addressing instructions is the simplification of straight-line
code. Architectures with auto-addressing capabilities often
combine a memory access instruction and an associated ad-
dress computation instruction into a single auto-addressing
instruction using a peephole instruction combiner.

Figure. 1a illustrates an example of this fusion, where
AArch64’s ldr load instruction and str store instruction are
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(a) Simplify the straight-line code

ldr q1, [x0]
ldr q2, [x1]
add q1, q1, q2
str q1, [x1]
add x0, x0, #16
add x1, x1, #16

ldr q1, [x0], #16
ldr q2, [x1]
add q1, q1, q2
str q1, [x1], #16

(b) Simplify the loops

ldr q0, [x9, x11]
str q0, [x10, x11]
adds x11, x11, #16

...

mov x11, #xzr

add x10,x10,#512
add x9, x9, #512
...

ldr q0, [x9], #16
str q0, [x10], #16
adds x11, x11, #4
...

mov x11, #-128

 ...

Figure 1: Apply Post-Increment Transformation to Optimize
the Code Size

replaced with the corresponding add instructions with post-
increment load and store. Notably, while this transformation
may not consistently reduce cycles, especially in advanced
pipeline setups with multi-issue and out-of-order execution,
it always optimizes code size. Consequently, many compilers
apply such local optimizations without considering address
increments between basic blocks. However, as observed, par-
ticularly in loops of many compute-intensive kernels, there
remain unexploited post-increment optimization opportunities.

Loop structures, which comprise multiple basic blocks and
typically manipulate large amounts of data, often involve
address calculation that can be optimized using post-increment
instructions. However, existing compilers rarely apply post-
increment transformations across basic blocks’ boundaries.

Figure 1b showcases another example of applying post-
increment transformation to simplify a loop. In this case,
registers x10 and x9 serve as the bases of different memory
addresses, with updates occurring at the loop latch. Notably,
the data accesses are uniformly strided (always increasing
by 16), both within and between loop iterations. Therefore,
transforming the code to use post-increment form eliminates
the address updating (add) instructions in the loop latch,
thereby reducing the code size of the loop structure.

C. Post-Increment Addressing in ML Kernels

Many ML kernels are highly compute-intensive, typically
operating on multi-dimensional tensors as inputs and process-
ing chunks of data iteratively. Figure 2 showcases a simple
Matrix Multiplication (Matmul) kernel and its corresponding
assembly code with and without post-increment instructions
generated. Note that the compiler has auto-vectorized code
by grouping each 4 elements into a single vector register.

ldr q1,[x0,x13]
ldr q2,[x11,x13]
add x13,x13,#16
cmp x13,#64
fmla v0.4s,v1.4s,
v2.4s

mov x13,#xzr

ldr q1,[x13],#16
ldr q2,[x11],#16
adds x14,x14,#4

fmla v0.4s,
v1.4s, v2.4s

mov x14, #-16

MatMul (Pseudo)
for(i=0;i<32;++i)
 for(j=0;j<64;++j) {
  o[i][j]=0;
  for(k=0;k<16;++k)
   o[i][j]+=
     a[i][k]*b[k][j];
 }

Figure 2: Implementations of Matrix Multiplication With and
Without AArch64 Post-Increment Loads.

The assembly code for the innermost loops using ’base-offset’
addressing is shown in the middle, while the code using post-
increment addressing is shown on the right.

Notably, AArch64 add instruction sets the Z-flag utilized
by b.ne branch instruction when the result is 0. Therefore,
transforming code using post-increment addressing results in
fewer total instructions. It eliminates the need for the cmp
instruction required to check the loop boundary in the ’base-
offset’ version, which is usually generated with compiler
optimization focusing on the induction variable (x13) sharing,
such as loop strength reduction (LSR). These optimizations
aim to save registers by combining the loop iteration counter
and the offset value of the array. While this approach mini-
mizes register pressure within the innermost loop, it may un-
derutilize architectural features. Consequently, auto-increment
addressing exhibits an advantage in this scenario.

Furthermore, current loop optimizations applied in produc-
tion primarily focus on the innermost loops. Optimizations like
LSR are execution-time-oriented and do not prioritize the code
size optimization of outer loops. This strategy can leave outer
loop nests unoptimized, generating more code than expected.

Figure 3 shows a computation kernel implementation of
a neural network layer and the associated sophisticated loop
transformations. Loop fusion, tiling, and unroll-and-jam opti-
mizations have been applied, which leaves substantial code
in the outer loop nests. In the right-most code snippet of
Figure 3, the code highlighted in green could result in an
unexpectedly large binary size, as observed in the current
LLVM implementation. This is due to the unoptimized address
calculation code. This underscores the necessity of optimizing
the code size of outer loop nests.

D. Scalar Evolution Analysis in LLVM

Scalar Evolution (abbreviated as ”SCEV”) is a mathematical
framework designed to portray the evolution of scalar values/-
variables across iterations of a loop. Compilers like LLVM
utilize SCEV analysis to formalize the loop induction variables
(IV) changes related to loop execution symbolically. In this
framework, a simple loop IV is expressed as a Recurrence.
In annotation, it consists of the expression of initial value
”base”, the operation ”op” performed for value modification,
and the expression of modification value ”step” annotated as
{base, op, step} to reflects recurring alteration of the IV within
a for-loop structure. In scenarios involving nested loops, a
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for (m = 0; m < M; ++m)
 for (n = 0; n < N; ++n) {
  out[m][n] = 0;
  for (k = 0; k < K; ++k)
   out[m][n] +=
     lhs[m][k] * rhs[k][n];
 }

for (m = 0; m < M; ++m)
 for (n = 0; n < N; ++n)
  out[m][n] += bias;

for (m = 0; m < M; ++m)
 for (n = 0; n < N; ++n) {
  out[m][n] = 0;
  for (k = 0; k < K; ++k)
   out[m][n] +=
     lhs[m][k] * rhs[k][n];
  out[m][n] += bias;
 }

for (m = 0; m < M; ++m)
 for (n = 0; n < N; n += 8) {
  out[m][n] = 0;
  ...
  out[m][n + 7] = 0;
  for (k = 0; k < K; ++k) {
   out[m][n] +=
     lhs[m][k] * rhs[k][n];
   ...
   out[m][n + 7] +=
     lhs[m][k] * rhs[k][n + 7];
  }
  out[m][n] += bias;
  ...
  out[m][n + 7] += bias;
 }

for(m = 0;m < M;++m)
 for(n = 0;n < N;n+=8) {
  for(nn = 0;nn < 8;++nn) {
   out[m][n+nn] = 0;
   for(k = 0;k < K;++k)
    out[m][n+nn] +=
     lhs[m][k] * rhs[k][n+nn];
   out[m][n+nn] += bias;
  }
 }

Fusion Tiling of 'N' (by 8) Unroll and Jam

Figure 3: Computation Kernel Implementation of A Neural Network Layer and the Associated Loop Transformations

more complicated Chain of Recurrence (abbreviated as ”CR”)
comes into play, such as {{base, op1, step1}, op2, step2, ...},
tailored to the specific nesting depth.

SCEV analysis widely serves LLVM transformations, in-
cluding but not limited to loop vectorization, SLP vector-
ization, and loop strength reduction. In our work, SCEV
analysis also establishes the foundations of related analysis
and transformation. Therefore, in the following sections, we
directly utilize LLVM terminologies and their abbreviations,
such as SCEV, CR, and IV, etc. when necessary, to explore
the topic more comprehensively.

III. METHODOLOGY

A. The Overall Workflow

IV-Chain Collection

Canonicalized Loops

Chain Extension and Combination

Profitablility Assessment

Post-Increment Transformation

Transformed Loops

Figure 4: The Overall Workflow of Postiz Analysis and Trans-
formation

Postiz is built on top of LLVM as a pass within the
LLVM pipeline. To enable post-increment transformation for
both straight-line code and nested loops, it utilizes existing
LLVM analyses such as loop info and SCEV, and relies
on LLVM transformations to provide canonicalized loops as
inputs. Figure. 4 demonstrates the overall workflow, which
consists of four phases.

The process begins by analyzing the innermost loops, which
depicted as ”IV-Chain Collection” phase in the figure. Postiz

first collects memory access instructions within the loop and
groups the associated induction variables into different chains,
referred to as ”IV-Chains”, based on the SCEV expressions
in each loop. The instructions corresponding to the IVs
within these chains are candidates for transformation into post-
increment form. However, as described in Section II, optimiza-
tion opportunities are not limited to the innermost loops. The
”Chain Extension and Combination” phase then attempts to
convert the IV-Chains by grouping IVs across loop nests and
different loop regions whenever possible. This approach allows
Postiz to excel beyond existing local instruction combining
methods and address common patterns seen in ML kernels.

Next, a ”Profitability Assessment” is applied to filter only
the IV-Chains considered beneficial based on various metrics.
This assessment aims to avoid negative transformations as
much as possible, including not only negative impacts on code
size but also side effects that could disrupt other optimizations.
Upon completing the analysis, Postiz proceeds to transform
each candidate by applying newly generated stride values to
the post-increment addressing form for the instructions, as
shown in ”Post-Increment Transformation” in the figure.

Note that while the functionality of Postiz is relatively
independent, it is positioned almost at the end of the LLVM IR
optimization pipline. Given that auto-vectorization is expected
in real-world ML compute kernels, this positioning allows Pos-
tiz to transform both scalar and vector data access instructions.

B. IV-Chain Collection
1) Select Instructions in Innermost Loops: As Postiz fo-

cuses on ML kernels described in Section II-C, in this early
phase, it targets the canonicalized innermost loop with a single
latch and a single exit, which are usually observed in ML
kernels. It collects the load and store instructions by traversing
all the instructions in the necessary basic blocks from the loop
header to the loop latch, where the necessary basic blocks
between two basic blocks ”A” and ”B” are defined as the
basic blocks from the intersection of dominators of the ”A”
and post-dominators of ”B”.

Memory access instructions inside other basic blocks are
simply ignored. This is because such instructions are par-
tially ordered in execution, making the computation of post-
increment strides undecidable at compilation time. Despite
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IV0

{{a,+,64}<outer>,+,16}<inner>

ldr q0, [x11], #16

{a,+,64}<outer>+{0,+,16}<inner>

IV0 IV1

ldr q0, [x11, x13]

for(i= 0;i<n;++i)
 for(j=0;j<64;j+=16)
   ... = a[i][j];

Figure 5: Different SCEV Expressions of the Same Memory
Access

these limitations, Postiz addresses most ML kernels we stud-
ied, as branches are rarely found inside the innermost loops.

2) IV and CR of the Memory Access Instruction: Using
LLVM’s SCEV analysis, Postiz can derive SCEV expressions
for memory address computation expressions of the collected
instructions. However, the relationship between address com-
putation expressions and SCEV expressions is not always
one-to-one. As illustrated in Figure 5, accessing data inside
the 2-dimensional array ”a” can be represented either as a
composition of two CRs or as a single CR with a depth of 2.
The former results in two IVs, potentially leading to generating
target load instructions that use base-offset addressing mode.
The latter results in a single IV, which may be used for post-
increment addressing mode, as shown in the figure.

To simplify our analysis, we focus on SCEV expressions
with their purely recursive CRs. Consequently, the IV whose
SCEV expression is the recursive CR corresponds directly
to the unique address computation expression of a load/store
instruction. This enables us to establish a one-to-one corre-
spondence between IVs and their associated instructions. For
brevity, in the subsequent paragraphs, we may refer to the ’IV
of an instruction’ to represent the address computation of that
instruction, and ’CR of an instruction’ to represent the unique
SCEV expression that Postiz cares about.

3) Group IVs Into Different Chains: The ultimate target
of this phase is to collect instructions that access nearby
addresses, meeting the requirements of post-increment ad-
dressing. We name the IVs of these instructions as ”post-
incrementable candidates”. Note that since we collect in-
structions from the loop header to the loop latch across
the necessary basic blocks, the candidates are processed in
program order. Figure 6 illustrates an example of grouping
post-incrementable candidates into different chains. In this
example, five IVs are collected as candidates, with their
corresponding CRs also shown. Postiz considers IV0 and
IV1 suitable for chaining together because their CRs have
a constant delta value of 4. This means that, throughout all
iterations, the addresses accessed by instructions using these
IVs maintain a consistent gap, making them ideal for post-
increment transformation. However, IV2 cannot be appended
to Chain#0 because the step values of its outer loops differ
from those of IV0, typically indicating different iteration

IV0: {{a,+,64},+,16}
IV1: {{a+4,+,64},+,16}
IV2: {{a+8,+,128},+,16}
IV3: {{a+12,+,64},+,16}
IV4: {{a+b,+,64},+,16}

[H] #0(IV0): {{a,+,64},+,16}
    #1(IV1): {{a+4,+,64},+,16}
[T] #2(IV3): {{a+12,+,64},+,16}

[H] #0(IV2): {{a+8,+,128},+,16}

[H] #0(IV4): {{a+b,+,64},+,16}

IVs of Post-Incrementable
Candidates

IV-ChainsChain#0

Chain#1

Chain#2

Figure 6: Group Induction Variables into Different IV-Chains

patterns in the innermost loops. Similarly, IV4 cannot be
added to Chain#0 because the subtraction IV4 - IV1
results in a non-trivial value of b - 4. This implies that the
memory address gap is a runtime variable, potentially leading
to high costs if post-increment transformation is forced.

As a result, IV2 and IV4 are placed into separate chains,
Chain#1 and Chain#2, respectively. Each IV-Chain con-
tains a Head (annotated as [H]) IV, and a Tail (annotated as
[T]) IV. The corresponding instructions of the IVs inside a
chain remain in program order, which facilitates later post-
increment stride calculation.

More generally, an IV ’iv’ can be grouped into an existing
chain ’N’ only when:

SCEViv − SCEVh(N) = SCEVConst

is satisfied, where h(N) represents the head IV of Chain#N.
And SCEVConstant stands for the loop invariant value,
which can be either a compile-time literal or a variable
unchanged when executing the nested loop.

C. Chain Extension and Combination

1) Chain Extension for Nested Loops: To minimize code
size in nested loops, Postiz extends the IV-Chain collection
to the basic blocks of outer loops. This approach targets the
optimization shown in the rightmost code snippet of Figure 3,
where the memory accesses in outer loops can optimized with
post-increment addressing.

Unlike IV-Chain collection in innermost loops, Postiz han-
dles outer loops by selecting basic blocks differently. It collects
instructions from the necessary basic blocks between the outer
loop’s header and the inner loop’s pre-header. Similarly, it
gathers instructions from necessary basic blocks between the
immediate successor of the inner loop’s exit block and the
outer loop’s latch. The left diagram in Figure 7 illustrates an
example of block selection when extending IV-Chains to two
levels of outer loop nests. Any instructions outside the colored
blocks are ignored.

Postiz use the same method as described in Section III-B3
to fill IV-Chains with supplemental blocks provided. Notably,
it still follows the program order to work.

2) Chain Combination for Remainder Loops: In some
scenarios, different inner loops are executed sequentially, and
memory accesses exhibit adjacency among these loops. This
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 ...
 ...

...  

Extend IV-Chains to
include instructions of

the colored basic block

...
     IVx:
[T] IVy: ...

Chain#M

[H] IVz: ...
.. Chain#N

Combine IV-Chains
between consecutive loops

by examining the stride

Combine the Chains when
the stride between IVx & IVy
equals to the stride between
IVy (last instance) & IVz

Figure 7: IV-Chain Extension and Combination

is sometimes a direct result of strip-mining optimization of the
innermost loops. A ”remainder loop” comes after the ”main”
loop in such situations.

To address the post-increment optimization opportunity for
this scenario, Postiz attempts to connect IV-Chains if two
loop regions exhibit a dominate/post-dominate relationship.
Assuming the IV-Chain of two loop regions are ”M” and ”N”,
where the loop region of ”M” comes before the region of
”N” in program order, they can be combined when the bellow
condition is satisfied:

SCEVh(M) − SCEVt(N) = SCEVConst

In this equation, h(M) represents the head of IV Chain#M
and h(N) represents the tail of IV Chain#N. When the rela-
tionship is proved, Postiz marks ”M” and ”N” as combined and
computes the associated cross-region stride. The right figure
of Figure 7 demonstrates an example of such a combination.
However, it is only beneficial to combine loop regions when
the cross-loop stride is equal to the iteration stride. We will
next explain different stride calculations to make it clear.

3) Strides Calculation: Stride values are required to convert
memory access instructions into post-increment addressing
mode. In Postiz, we categorize the post-increment strides of
an IV-Chain into three types, including:

• In-Region Stride. An in-region stride is the delta of
two IVs. It represents the address delta between the
corresponding instructions.

• Iteration Stride. The iteration stride is associated with
the tail IV, representing the address difference between
the final memory access of the last inner iteration and
the next memory access. The stride value may vary de-
pending on the loop nest level of the subsequent accessed
addresses.

[H] IV0: {{a,+,64}<L0>,+,16}<L1> 

IS2<L1>: CR0+16-CR2 = 4
IS2<L0>: CR0+64-CR2-16*(L0.trip_count-1)

IV-Chain

RS1: CR2 - CR1 = 8

[T] IV2: {{a+12,+,64}<L0>,+,16}<L1>

Strides
RS - In-Region Stride

IS - Iteration Stride

RS0: CR1 - CR0 = 4

    IV1: {{a+4,+,64}<L0>,+,16}<L1>

Figure 8: In-Region Stride and Iteration Stride Calculation

• Cross-Region Stride. An cross-region stride is defined
as the address delta between the last and first memory
accesses from loop regions that can be combined.

The in-region stride can be directly obtained by subtracting
the CR expressions between IVs. Specifically, the in-region
stride between two IVs is calculated using the following
equation:

RSi = Ci+1 − Ci (1)

In Equation 1 above,
• Ci represents the ith CR expression in the IV-Chain.
• RSi represents the in-region stride value of ith IV.
For ML workloads, it is likely that memory accesses have

identical in-region strides between IVs in an IV-Chain, as
the instructions are typically generated through compiler op-
timizations. Even in cases of manual memory management,
ML workloads tend to exhibit predictable, non-random access
patterns, making consistent in-region strides likely. Therefore,
post-increment optimization is especially beneficial for ML
kernels.

However, calculating the stride of the tail IV is more
complex, as it spans multiple iterations. Furthermore, since
Postiz handles nested loops, the iteration stride consists of
multiple values, each corresponding to a specific loop nesting
level. In general, the iteration stride of the tail IV for a given
loop nesting level can be calculated using Equation 2:

IS[k] = CH − CT + I[k]−
n∑

i=k+1

T [i] ∗ I[i] (2)

In this equation,
• k represents the loop nesting level, with the outermost

loop as 0.
• IS[k] is the iteration stride value of loop nest L[k].
• CH and CT are the CR expressions of the head and tail

IVs in the chain.
• I[k] denotes the step value for loop nest L[k].
• T [i] denotes the trip count for loop nest L[i].
• Loops from k+1 to n are inner loops of loop nest L[k].
Figure 8 illustrates the calculation of both in-region stride

and iteration stride through an example. In this case, a set of
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IV-Chain #0 <L3>

[H0] {{{B,+I1}<L1>,+I2}<L2>,+,I3}<L3>
     {{{B+C1,+,I1}<L1>,+,I2}<L2>,+,I3}<L3>
[T0] {{{B+2*C1,+,I1}<L1>,+,I2}<L2>,+,I3}<L3>

IV-Chain #1 <L4>

[H1] {{{B+2*C1+O0,+I1}<L1>,+I2}<L2>,+,I3}<L3>
     {{{B+2*C1+C2+O0,+,I1}<L1>,+,I2}<L2>,+,I3}<L3>
[T1] {{{B+2*C1+2*C2+O0,+,I1}<L1>,+,I2}<L2>,+,I3}<L3>

CR Delta: O0
Cross-Region Stride: O0 - I3 * (L3.trip_count - 1)

Figure 9: Cross-Region Stride Calculation

IVs forms an IV-Chain, with IV0 as the head and IV2 as the
tail. The in-region strides (RS0 and RS1) correspond to IV0
and IV1, while the iteration stride (IS2) corresponds to IV2.
The calculation of RS0 and RS1 is straightforward, involving
simple subtraction between CR expressions. However, calcu-
lating IS2 requires a more nuanced approach, as it involves
subtracting the head from the tail, but the address access by
head IV is from the next iteration.

Furthermore, with two levels of loop nests, the iteration
stride of IV2 consists of two values: IS<L1> for loop
L1, and IS<L0> for loop L0. For the outer loops stride
IS<L1>, it requires subtraction of the strides accumulation
of L0.trip_count - 1 inner iterations.

Moreover, the IV-Chain Combination introduces additional
considerations for post-increment stride computation. For in-
stance, in Figure 9, loops L3 and L4 are subloops of the parent
loop L2. To compute the cross-region stride between L3 and
L4, the strides from all L3 iterations must be accumulated.
More generally, the cross-region stride (CS[j][k]) of the jth

IV-Chain at loop nesting level k is calculated as follows:

CS[j][k] = O[j]−
n∑

i=k+1

T [i] ∗ I[i] (3)

where O[j] is the difference between the head CR of the (j+
1)th IV-Chain and the tail CR of the jth IV-Chain. Other terms
follow from Equation 2.

D. Profitability Assessment

While earlier phases of Postiz focused on basic profitabil-
ity conditions, the trade-off between applying post-increment
transformations or not is crucial for effective optimization.

LLVM’s existing LSR optimization employs an advanced
solver to minimize address computation costs, particularly
within innermost loops. To ensure Postiz performs on par with
LSR, we compare both within innermost loops, evaluating
optimization based on register usage and computation strength.

1) Register Usage Assessment: We model Register Us-
age(RU) for a innermost loop as follows:

• RUlsr: The sum of CRs within all SCEV expressions in
a loop. This reflects the induction variables and thus the

registers required to calculate addresses, control loops,
etc., across loop iterations. For example, if multiple
SCEV expressions exist in a loop as follows:

IV1IV2

IV3IV2
{{a,+, 64} < L0 >,+, 16} < L1 > + {0,+, 4} < L2 >SCEV #0:

{{a,+, 64} < L0 >,+, 16} < L1 > + {b,+, 16} < L3 >SCEV #1:

LSR attempts to find shareable CRs (like IV 2) to mini-
mize the IV count (e.g., to 3).

• RUpostiz: The count of IV-Chains plus CRs/IVs in SCEV
expressions but not in IV-Chains. Each IV-Chain rep-
resents a single register usage across iterations, other
IVs are calculated similar to RUlsr. Additionally, if any
variable strides are required, one extra register usage is
added to the RUpostiz .

Postiz transformation is deemed profitable when RUpostiz <
RUlsr. If they are equal, further assessment of computation
strength is required.

2) Computation Strength Assessment: We define the Com-
putation Strength (CS) of a set of IVs(IS) as follows:

CS(IS) = |IS|+
∑
i∈IS

NL(i)

Where:
• The function NL(i) retrieves the nesting-level of IV i.
• |IS| represents the size of the set, reflecting the cost of

updating IVs in loop iterations (1 per IV).
•

∑
i∈IS NL(i) reflects the initialization cost of IVs at

different nesting levels.
Let ISloop denote the IVs produced from all SCEV expres-

sions in the loop. We define:

CSlsr = CS(ISloop)

Next, let Chains be the set of all IV-Chains in the loop.
We define:

CSpostiz = CS(ISloop − IV Set(Chains))+∑
c∈Chains

IStride(c) +HStride(c)

Where:
• IV Set(Chains) retrieves the set of IVs from the

Chains.
• IStrides(c) represents the cost of cross-loop-nest fix-ups

when there is more than one iteration stride.
• HStride reflects the cost of handling strides that exceed

the target instruction’s max value, necessitating a register-
based post-increment.

If CSpostiz ≤ CSlsr, Postiz considers the transformation
profitable and triggers post-increment transformation.

E. Post-Increment Transformation

After profitability accessments with computed post-
increment strides, Postiz has determined the instructions to
transform. It rewrite all instructions whose corresponding IVs
are considered as profitable into post-increment addressing
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ldr q1,[x0,x13] ldr q1,[x13],#4 ldr q1,[x13],#4

add x13,x13,#60

No Transformation Single Iteration Stride Two Iteration Strides

Figure 10: Transform Memory Access Instructions into Post-
Increment Addressing Mode.

mode if possible, or generate IR what can be easily converted
to post-increment loads/stores by later instruction combiner
(implemented in AArch64).

The figure on the left of Figure 10 illustrates a nested loop
with the last load instruction appearing in the loop body. No
post-increment transformation has occurred. The middle figure
depicts a scenario where all iteration strides are uniform. In
this case, no further action is required for the outer loops;
Postiz simply rewrites the instruction to a post-increment form
to complete the transformation.

The figure on the right presents a situation with two different
iteration stride values for different loop nest levels. Here,
Postiz generates address fix-up instructions in the latch of
the outer loop. While this address fix-up reduces the gain in
optimizing code size, it ensures the correctness of the post-
increment transformation. Similarly, if there are more than two
iteration strides, the instruction rewrites may add more fix-up
code into different loop latches. However, in such cases, the
transformation may not be profitable.

IV. EXPERIMENT

A. Research Objectives

The primary objective of this study is to evaluate the
optimization and coverage improvements achieved by Postiz
in comparison to the default settings of the LLVM compiler.
Specifically, our research objectives are as follows:

• Analyze Code Size Reduction: Measure the reduction
in binary size achieved through the Postiz method and
compare it to the LLVM default settings.

• Examine Instruction Changes: Investigate the effect of
Postiz on instruction optimizations, with a focus on nested
loop structures, and compare these results to the default
LLVM behavior.

• Estimate Register Usage: Evaluate the changes Postiz
introduces to the count of general-purpose registers used,
approximating its potential impact on register pressure in
benchmark functions.

• Evaluate Benchmark Coverage: Determine the breadth
of coverage of Postiz method by identifying the number
of cases impacted by loops and functions where post-
increment instructions are generated and optimized, com-
pared to the default LLVM implementation.

By pursuing these research objectives, we aim to provide a
comprehensive understanding of the benefits offered by Postiz
and its influence on the internal workings of the compiler.

B. Experiment Settings

Postiz optimization is integrated into LLVM for both
AArch64 (Platform #1) and a DSA (Platform #2) target [24].
As described in Section II, AArch64 architecture with NEON
SIMD vector extension support allows post-increment address-
ing for both scalar and vector types. We focus on the latter
for Platform #1. The DSA (domain-specific architecture) is a
hardware accelerator designed for ML workloads, supporting
post-increment addressing for its SIMD instructions. However,
due to the limited encoding bits in its instructions, the DSA
lacks support for immediate values as addressing offsets,
despite still supporting register-based addressing modes. This
limitation makes post-increment the preferred choice for code
generation on Platform #2.

We have conducted experiments with different setting on
different platform.

1) Platform #1: We conduct the comparison among three
different settings, including:

• base: Default LLVM-13 with AArch64 support, ex-
cept for straight-line auto-addressing optimizations, like
aarch64ldstOpt and DagCombiner are disabled.

• llvm: Similar to base but without turning off any opti-
mizations. *.

• postiz: Similar to llvm but with Postiz optimization ap-
plied ahead of straight-line auto-addressing optimizations.

2) Platform #2: We conduct similar comparison between
two different settings, including:

• llvm: Default LLVM-11 with DSA target code generation
support. It is used as the baseline.

• postiz: Similar to llvm but with Postiz optimization.
In this experiment, we use LLVM llc tooling as the

driver for compilation for all the above settings. We apply the
-O2 optimization level to both platforms. For Platform #1,
we use the -mtriple=aarch64 -mcpu=cortex-a72
options as the target options, while for Platform #2, we use the
default options. llc option ”-stats” is utilized for statistics
collection. Further, llvm-size tool is employed for code
size analysis.

C. Benchmark Programs

We selected the ML model MobileNet and BERT benchmark
for our study due to their significance in deep learning and
their computational complexity. MobileNet is a Convolutional
Neural Network (CNN) model used for computer vision,
focusing on efficient convolutions and other commonly used
kernels for image classification in resource-constrained envi-
ronments. BERT, based on the Transformer architecture, is
designed for natural language understanding and represents
state-of-the-art attention structures. Together, these models

*A subtle change is made to let AArch64 DagCombiner to prioritize post-
increment over pre-increment in optimization

8



Table II: Computation Kernel Information of MobileNet and
BERT

Kernel Category Cnt Label Loop Depth

MobileNet: 34 Kernels

Fused Conv2d 20 #4, #5, #6, #7, #8, #9,
#10, #11, #12, #13, #14,
#15, #16, #17, #18, #19,
#20, #21, #22, #23

2/3/4

Fused Depthwise
Conv2d

10 #25, #26, #27, #28, #29,
#30, #31, #32, #33, #34

2/3

Average pooling 1 #3 2
Dense 1 #24 2
Layout Transform 1 #1 1
Others 2 #2 0

BERT: 21 Kernels

Batch Matmul 5 #5, #6, #7, #8, #9 3/4
Transpose & Broadcast 4 #14, #15, #16, #17, #18 2/3
Dense 1 #10 2
Softmax 1 #11 2
Arithemtic 7 #2, #3, #4, #13, #19, #21 1/2
Others 3 #1, #12, #20 0

cover a wide range of kernel types found in diverse ML
workloads, spanning computer vision, NLP (Natural Language
Processing), and emerging LLMs (Large Language Models).

We utilize TVM to generate LLVM IR kernels for Mo-
bileNet and BERT. In TVM, we apply loop transformations,
including vectorization, unrolling, and more, to optimize mem-
ory locality, exploit instruction-level parallelism, and reduce
memory access latency on both platforms. The resulting IR is
then provided to llc for Postiz optimizations and additional
lower-level code optimization and generation.

TABLE II illustrate the detail of different kernel categories.
In MobileNet, 31 out of 34 kernels are fused 2D convolutions,
which are highly compute-intensive and often involve deeply
nested loops, typically with a nesting depth of up to 4.
Moreover, all loop bounds are constants, allowing the trip
count and post-increment strides to be determined at compile
time. While the Batch MatMul kernels in BERT share a
similar structure, the computation within deeply nested loops is
less dominant compared to MobileNet. In general, most cases
involve a loop nesting level greater than one, which Postiz is
expected to optimize better.

D. Results

1) Code Size Comparison: In this metric, we measure the
size of the .text section to compare code size differences in
binaries. Figure 11 illustrates a comparison of normalized code
sizes between postiz (bars) and llvm (lines). Platform #1 uses
base as its baseline, whereas Platform #2 uses llvm as its
baseline since there is no LLVM straight-line optimizer for
this target. The accompanying chart showcases the proportion
of the enhanced, unchanged, and degraded cases for the two
benchmarks.

As observed, postiz achieved an average code size reduction
of 9.45% compared with llvm. Specifically, on Platform #1,
postiz reduced code size by 5.31% for MobileNet and 6.73%

(a) Platform #1

Degraded
Unchanged
Enhanced

87.9%
3.0%

9.1%

MobileNet

88.9% 11.1%

BERT

(b) Platform #2

Degraded
Unchanged
Enhanced

84.0%
8.0%

8.0%

MobileNet

73.3% 26.7%

BERT

Figure 11: Comparison of Code Sizes Between llvm and postiz
for the MobileNet and BERT Model (Normalized, Excluding
Unaffected Cases)

for BERT. On Platform #2, postiz reduces code size by 6.63%
for MobileNet and 26.55% for BERT. From the perspective of
test cases, on Platform #1, postiz improved code size reduction
of 87.9% cases for MobileNet and 88.9% cases for BERT,
compared with llvm. On Platform #2, improvements were seen
in 84.0% of cases for MobileNet and 73.3% of cases for BERT.
These results underscore the effectiveness of postiz in code
size reduction over existing straight-line optimizers.

Certain cases, such as MobileNet#12 and BERT#13,
exhibited significant reductions in code size. Further inves-
tigation revealed that the improvement in MobileNet#12
resulted from post-increment transformation of the outer loops,
which the LLVM LSR optimization missed, as it focuses solely
on the innermost loop. In the case of BERT#13, postiz gen-
erated fewer induction variables than llvm, reducing the num-
ber of induction variable updates required across iterations,
leading to a significant decrease in code size. Additionally,
postiz achieved a higher reduction ratio in BERT on Platform
#2 because, without Postiz optimizations, LLVM generated
more induction variables as offset registers. Since the platform
lacks a ”base-offset” addressing mode, the compiler frequently
refilled offset registers, which increased the code size. This
underscores the importance of Postiz for optimizing such ISAs.

Moreover, we conducted a comparison between the scenar-
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Figure 12: Platform #1 - Comparison of Code Size Improve-
ments With Profitability Assessment Enabled And Disabled

ios where Profitability Assessment is enabled and disabled on
Platform #1 to examine its effectiveness. Figure 12 illustrates
the improvement ratio of the two results compared to the llvm
baseline for MobileNet and BERT. While not always superior
in all cases, enabling Profitability Assessment results in an
average additional code size reduction of 2.74% for Postiz.
Notably, without Profitability Assessment, postiz experiences
degraded optimization in 39.22% cases (20 cases), compared
to only 5.88% cases (3 cases) with Profitability Assessment
enabled. Thus, profitability assessment enhances both the
overall optimization degree and the stability of optimizations.

2) Instruction Count Change Comparison: In this metric,
we measure the instruction counts within loops. We performed
a detailed analysis of instruction count changes across two
different scopes: the innermost loop and the entire loop nest,
as illustrated in Figure 13. The lines in the figure represent the
reduction ratio of instruction counts for the innermost loops,
while the bars represent the reduction ratio for the entire loop
nests. The reduction ratio is calculated by comparing the data
between postiz and llvm.

On Platform #1, postiz achieved an average reduction of
2.67% in instruction counts for innermost loops and an average
reduction of 9.76% for entire loop nests. On Platform #2,
postiz achieved an average reduction of 11.73% in instruction
counts for innermost loops and an average reduction of 13.61%
for entire loop nests. Clearly, Postiz is capable of effectively
reducing instruction counts in both innermost and outer loops.

Table III: Instruction Count Reductions: postiz over llvm

Reduction/Total Platform #1 Platform #2

Count BERT MobileNet BERT MobileNet

Innermost Loops 24/586 7/1823 1081/3718 446/4167
Entire Loops 94/899 206/4169 1090/4122 866/8176

TABLE III provides the reduction and instruction counts.
The instruction reduction outside of inner loops is significantly
higher in MobileNet, which primarily contains deeply nested
loops. Additionally, the figures show that postiz does not
reduce instructions inside innermost loops for cases with
high loop depth. These findings indicate that the outer loop
optimization addressed by postiz plays an important role.

(a) Platform #1

(b) Platform #2

Figure 13: Improvement by postiz on Instruction Changes in
Innermost Loops and Entire Loops Nests Compared to llvm
(Normalized, Excluding Unaffected Cases)

3) Register Usage Comparison: Since Postiz affects the
choice of induction variables, it may impact scalar-integer
register pressure inside the loops. We estimated the changes
in general purpose register usage in kernel functions to reflect
how it could affect the register pressure internally.

TABLE IV shows the accumulated usage count for different
benchmarks and platforms, as well as the reduction count
of postiz compared to llvm. As observed, on Platform #1,
a reduction of 10.27% in register usage was observed for
MobileNet, and a 8.85% reduction is for BERT. On Platform
#2, while there was a slight increase in register usage by 0.03%
for MobileNet, it reduced register usage by 18.52% for BERT.
This reflects that Postiz optimization can reduce register usage
and positively impact register pressure.

Table IV: Register Usage Reductions: postiz over llvm

Reduction/Total Platform #1 Platform #2

Count BERT MobileNet BERT MobileNet

GPs 25/395 106/984 100/444 -1/743

Additionally, we tested the influence of Profitability As-
sessment on register usage. The comparison results show that
Profitability Assessment reduces register usage by 0.49% in
MobileNet and by 0.79% in BERT, reflecting Profitability
Assessment plays an postive role in reducing register usage.

4) Optimization Coverage: We conducted an evaluation of
optimization coverage for both postiz and llvm. In Figure 14,
we show the influence of benchmark cases by affected instruc-
tions and affected loops.

10



(a) Platform #1

(b) Platform #2

Figure 14: Improvements by postiz on Affected Loops and
Instructions Compared to llvm (Excluding Unaffected Cases)

For Platform #1, postiz generated post-increment instruc-
tions in 50 out of 51 cases across all benchmarks, with 47
cases (92.16%) where postiz transformed more instructions
than llvm, with a increment of up to 55. Accumulating results
from all the benchmark cases, postiz generated 828 post-
increment instructions, while llvm produced only 141. This
clearly demonstrates postiz is better at exploiting optimization
opportunities than llvm.

Regarding affected loops, postiz influenced a total of 118
loops, while llvm affected only 77. This represents a 53.25%
increase in loop coverage, further highlighting the broader
scope of optimization coverage provided by postiz.

5) Impact on Runtime Performance: Lastly, we evaluated
the runtime performance of Postiz on Platform #1. The average
performance improvement for MobileNet was 0.13%, while
BERT saw a slight decline of 1.05%, primarily due to differ-
ences in instruction scheduling. Despite this, we conclude that
Postiz effectively optimizes code size with minimal impact on
performance.

V. RELATED WORKS

1) Research on Auto-Addressing: Much previous research
on optimizing post-increment addressing has focused on min-
imizing memory access overhead, particularly in DSP archi-
tectures. However, unlike Postiz, which focuses on nested
loops with relatively regular memory access patterns inside
inner loops, most of these studies optimize sequential code
where memory accesses are inherently irregular. This drives
the research differently from Postiz.

In this direction, Bartley et al. [2] first introduced the
Simple Offset Assignment (SOA) problem, aiming to minimize
address arithmetic in restricted addressing modes. Liao et al.

[12] extended this to the General Offset Assignment (GOA)
problem, providing graph-based methods to optimize variable
placement. Later, Salamy et al. [18] further improved code
efficiency by reducing address modification instructions using
coalescing techniques. Zhuang et al. [26] also contributed
to the offset assignment problem by presenting a framework
that leverages auto-increment/decrement modes to minimize
memory access overhead and improve variable coalescing.

Memory access optimizations were explored by Hartley
et al. [8] and Sudarsanam et al. [19], who demonstrated
the benefits of auto-increment and auto-decrement addressing
modes in reducing explicit address calculations. Wess et al.
[23] proposed an Address Generation Unit (AGU) model that
further minimized address computation,while Udayanarayanan
et al. [20] enhanced memory layout strategies for DSPs.

Compiler-based optimizations have also played a significant
role. Liem et al. [13]’s ArrSyn tool and Zivojnovic et al. [28]’s
DSPstone benchmarks showcased significant improvements
in code size and performance by optimizing memory access
patterns. Ottoni et al. [14] contributed optimizations in storage
assignment using post-increment instructions. Huynh et al.
[10] further evaluated various offset assignment heuristics and
introduced the Memory Layout Permutation (MLP) problem,
emphasizing the importance of memory layouts in optimizing
post-increment addressing efficiency.

2) Scalar Evolution: Postiz relies on LLVM’s scalar evo-
lution analysis to function effectively. Numerous studies have
explored chains of recurrence and scalar evolution analysis
to build a foundation for this approach. Bachmann et al. [1]
demonstrated its effectiveness for periodic function evaluation,
while Van et al. [21], [22] used it to analyze induction vari-
ables, allowing loop optimizations such as strength reduction
and parallelization. Brich et al. [3], [4] applied it to nonlinear
array dependence testing. Zima et al. [27] further developed
tools for manipulating chains of recurrences.

3) Research on Code Size Reduction: Two widely used
techniques, including function merging and function outlining,
address code size reduction effectively. The function merging
method, as explored by Edler et al. and Rocha et al. [7], [17],
reduces redundancy by merging similar functions. On the other
hand, the function outlining [5], [25] extracts replicated or
noncritical code (e.g., code not in the hot path) into separate
functions, helping to streamline the primary code flow.

Another approach introduced by RoLAG [15] identifies iso-
morphic code within straight-line segments using SSA graph
alignment, generating loops to optimize size. More recently,
Rocha et al. proposed HyBF [16], a framework that reduces
code size by merging conditional branches with similar code
across both paths.

In addition, machine learning has emerged as a tool for code
size optimization. Liang et al. [11] applied machine learning
to predict optimal compiler pass sequences, yielding further
code size improvements by tailoring pass orders to specific
programs.
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VI. CONCLUSION

In this study, we have introduced a novel loop optimization
technique called Postiz. This approach effectively incorporates
the usage of post-increment instructions into loops and focuses
on optimizing nested loops to reduce code size. By analyzing
SCEV expressions, extending and combining IV-Chains, and
including a profitability assessment, Postiz has successfully
applied to the most frequently used machine learning kernels
derived from MobileNet and BERT. The results demonstrate
significant reductions in code size and enhancements in op-
timization coverage, indicating Postiz’s capability to bridge
post-increment hardware and compute-intensive workloads.

Our work delves into areas rarely explored by prior research,
shedding light on the potential implications for ISA design
in processors, particularly in scenarios suitable for machine
learning. Looking ahead, studying a wider range of workloads
could be useful to broaden the applicability of post-increment
addressing. Furthermore, it is possible to merge Postiz and
LSR to better support more architectures with auto-addressing
capabilities.
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