
PresCount: Effective Register Allocation for Bank
Conflict Reduction

Xiaofeng Guan†‡, Hao Zhou‡, Guoqing Bao‡, Handong Li†, Liang Zhu†, and Jianguo Yao†‡

†Shainghai Jiao Tong University, Shanghai, China
‡Shanghai Enflame Technology Co. Ltd, Shanghai, China

†(guanxiaof,handong-lee,liang.z,jianguo.yao)@sjtu.edu.cn
‡(vincent.zhou,guoqing.bao)@enflame-tech.com

Abstract—Modern processors with large multi-banked register
files often rely on hardware solutions to resolve bank conflicts
efficiently. However, these hardware-based methods, while flexi-
ble, can incur runtime penalties and restrict the exploration of
optimized hardware designs. In contrast, compiler-based methods
for register bank assignments avoid runtime overhead. However,
incorporating bank assignment into the complex register allo-
cation process presents significant challenges, leading existing
methods to adopt conservative approaches to avoid potential side
effects.

This paper introduces the novel register allocation method
PresCount, which enhances the coloring strategy for the Register
Conflict Graph (RCG) and incorporates a bank pressure tracking
mechanism to improve performance. The integrated register bank
assigner in PresCount effectively reduces bank conflicts, achieving
remarkable reductions of 43.28% and 27.76%, respectively,
compared to existing methods on platforms with rich register
banks and limited register budgets, as demonstrated by SPECfp
and CNN-KERNEL benchmarks.

Furthermore, a subgroup splitting technique is introduced to
facilitate register allocation under the bank-subgroup register
file design, specifically our Domain-Specific Architecture (DSA)
for AI computing. This technique demonstrates an impressive
99.85% reduction in bank conflicts for domain-specific kernel
functions.

By addressing the challenges of bank conflicts in register
allocation, the proposed PresCount method showcases significant
improvements in performance and efficiency for platforms with
different register configurations and domain-specific workloads,
allowing for more flexible exploration of optimized hardware
designs.

Index Terms—compiler, register allocation, bank conflict

I. INTRODUCTION

Modern processors, including CPU systems, increasingly
rely on the large register file to implement vector registers
for Instruction Set Architecture (ISA). Together with Single
Instruction Multiple Data (SIMD), CPU throughput can be
improved significantly. Similarly, GPU systems utilize the
large register file to support the Single Instruction Multiple
Thread (SIMT) executions, thus enhancing Thread-Level Par-
allelism (TLP). Meanwhile, given that Artificial Intelligence
(AI) computation typically requires a larger data block, it
is possible to incorporate the large register file to improve
performance.

The large register file is often implemented as multi-banked
on-chip storage [1]–[6], but comes with side effects of bank

conflict especially during simultaneous access to a single
register bank. For instance, executing an instruction with two
input register operands from the same bank can result in a
bank conflict if the register bank has only a single read port.
Therefore, hardware and/or software must handle the conflicts
properly to ensure the functionalities of the computing system.

Different hardware and/or software methods have been
proposed to resolve the conflicts. For example, hardware-
based methods serialize conflicting register accesses through
buffering the acquired data to meet the computational demand
of the Arithmetical Logic Unit (ALU); GPU utilizes arbitrator
and operand-collector [1], [6] to achieve the intended result.
However, an additional delay of N-1 cycles will be introduced
to ensure N-conflicted register accesses during runtime. In
contrast, software methods, e.g., compilers, utilize a static
approach that does not necessarily incur costs at runtime. It
is based on the fact that the bank conflict imposes a unique
restriction on the instruction operand usage. Inspired by the
well-known graph coloring approach [7], most prior compiler
implementations construct the Register Conflict Graph (RCG)
for bank assignment through the coloring process [3], [8]–
[10]. It is challenging to discover a conflict-free assignment
if the RCG is hard to be colored. As a result, resolving bank
conflicts still relies on sophisticated hardware designs.

To mitigate the penalties, different hardware enhancements
have been proposed. For instance, the Register File Cache
(RFC) [5], [11], which is designed for exploiting the temporal
locality of register access, eliminates bank conflict penalties
through optimization of pre-fetched instruction operands. Al-
ternatively, interleaving register indexes across banks yields
improved bank conflict ratios compared to non-interleaved
setups. Another straightforward method is to increase the
number of register banks, but it leads to increased costs in
physical implementation [4]. The side effects for most of
the hardware improvements lie in extra runtime overhead,
increased complexity of the micro-architecture, and/or limited
exploration space.

Meanwhile, reducing bank conflicts during compile time
is advantageous, as it avoids introducing runtime overheads.
In the experiment, we observed that the bank conflict-related
instructions occurred 56.37%/85.48% of cases in SPECfp
and CNN-KERNEL benchmarks during constructing a multi-

banked floating-point register. Notably, Intel’s GPU research
reported a similar result [12]. Given this pervasive occurrence,
there is an increasing demand for employing static methods to
reduce bank conflicts considering that peak performance and
performance per watt are both crucial in the design of modern
processors [2].

Unfortunately, previous compiler researches that are capable
of statically reducing bank conflicts have different drawbacks.
One of the problems is that they rely on register splitting to
tackle the RCG colorability issue, but the splitting requires
register copies and can trigger register spilling, while it is
sometimes, the splitting choices are hard to make, leading
the systems inapplicable. Another notable drawback lies in
the absence of consideration for register live ranges during
register bank assignments. This oversight can increase register
pressure, which interferes with the register allocation (RA)
process [8]. And as register spillings are commonly regarded
as more expensive than bank conflicts, it is necessary to
develop a more efficient bank allocation method for multi-
banked register file systems.

In this study, we present PresCount, a novel RCG bank
assignment method that builds upon LLVM’s default register
allocator, addressing limitations seen in prior work. Unlike the
previous RCG-based approaches focusing on register splitting,
our method incorporates cost estimation and register pres-
sure modeling during the bank assignment phase. It results
in a substantial reduction in bank conflicts while having
minimal impact on the existing LLVM Register Allocation
(RA) pipeline, as demonstrated through experimentation on
public benchmarks. We further extended the validation of
PresCount to an AI Domain Specific Architecture (DSA)
equipped with a large multi-banked register file [13]. This
DSA employs a two-level bank-subgroup design and imposes
additional constraints on register usage. With the inclusion
of an additional subgroup splitting mechanism, PresCount
still distributed registers evenly among banks and subgroups.
It finally achieved a significantly lower bank conflict ratio
compared to the conventional solution.

We have summarized our major contributions below:

• We proposed a novel register bank assignment method
capable of cost estimation and register pressure modeling,
which is able to significantly reduces the bank conflict
ratio in different systems under the large banked register
files while having minimal impact on the existing RA
pipeline for the compiler. The experiment demonstrated
that the bank conflicts can be reduced by 43.28% and
27.76%, respectively, on SPECfp and CNN-KERNEL
benchmarks compared with the existing method.

• We applied the proposed method on our DSA specifically
designed for AI computing and extended it for subgroup
splitting in a multi-banked and sub-grouped register file
architecture. The method is able to optimize unbalanced
register assignments despite more constraints on the
hardware and demonstrated a 99.85% reduction of bank
conflicts on the DSA.

II. BACKGROUND AND MOTIVATION

In this section, we first discuss register bank conflict in
more detail and demonstrate its pervasiveness by constructing
a large multi-banked register file in our experiments. Then we
introduce the traditional compiler register allocation and its
relationship with the RCG-based bank assignment. We will
show examples of the limitation of current RCG-based bank
assigners.

A. Bank Conflicts in the Construction of Large Register File

The multi-bank architecture is employed to enhance the
efficiency of computer memory and is also extended to register
hardware, providing improved efficiency and performance to
the hardware. However, this design also has weaknesses. In
particular, the use of hardware to mitigate bank conflicts or
penalties adds to the complexity, power consumption, and
latency challenges of hardware design.

In various architectures, a bank conflict, which is a hardware
resource hazard during execution, can often be statically deter-
mined. To illustrate, let us consider the following instruction
in the intermediate representation (IR) form:

vr a = o p e r a t i o n vr b , v r c

When the compiler assigns virtual register operands vr b
and vr c from the same bank, a bank conflict can arise at
runtime if the hardware microarchitecture lacks support for
parallel reads from a single bank. To avoid this conflict, the
compiler can assign vr b and vr c to registers from different
banks, effectively resolving the issue. Consequently, the bank
assignment process plays a crucial role in minimizing such
conflicts.

(a) SPECfp: Relevants
relevant

56.37%

irrelevant

43.63%

(b) SPECfp: Distribution of benchmarks with different
conflict ratios

0 0.2 0.4 0.6 0.8 1

2-way

4-way

8-way

16-way

(c) CNN-KERNEL:
Relevants
relevant

85.48%

irrelevant
14.62%

(d) CNN-KERNEL: Distribution of benchmarks with
different conflict ratios

0 0.2 0.4 0.6 0.8 1

2-way

4-way

8-way

16-way

conflict-free 0 ∼ 5% 5% ∼ 10% 10% ∼ 20%

20% ∼ 40% > 40%

Figure 1: The proposition of workload with different bank
conflict in ratios. An “N-way” represents the data of an N-
way interleaving register file.

Bank conflicts are ubiquitous in the large register file
if no bank assignment is involved. We conducted several
preliminary experiments on SPECfp and CNN-KERNEL cases
using Clang/LLVM compiler as shown in Figures 1a and 1c
which demonstrated the prevalence of bank conflicts in various

programs. Given that not all programs contain bank conflict
instructions, we categorized the programs as follows:

• Conflict-irrelevant denotes a program containing no
bank conflict instructions.

• Conflict-relevant denotes a program containing at least
one bank conflict instruction.

• Conflict-free denotes a Conflict-relevant program that
does not trigger a bank conflict during runtime.

• Conflict denotes a conflict-relevant but not conflict-free
program.

As shown in Fig. 1a, 177 out of 314 (56.37%) SPECfp
tests were conflict-relevant, whereas 53 out of 64 (85.48%)
were conflict-relevant for CNN-KERNEL tests as appeared in
Fig. 1c. The preliminary statistics illustrated that bank conflict
instructions are prevalent in both general computing and AI
computing applications, while the latter is more prominent.

Figures 1b and 1d illustrated conflict-relevant when com-
pared to the conflict-free programs in four distinct register files,
i.e., interleaved register indexes in their 2/4/8/16 banks. The
data indicated that 50.29% to 71.18% of the programs are
not conflict-free in the SPECfp set and 64.15% to 84.91% in
CNN-KERNEL tests. Moreover, it is still difficult to achieve
conflict-free even for the hardware system with a large number
of register banks, which is normally considered to be able to
handle bank conflicts very effectively. Therefore, it is very
desirable to design a more efficient bank assignment method
based on the existing compiler techniques for bank conflict
reduction.

B. Unbalanced Bank Assignment

The coloring-based assignment of register banks resembles
the assignment of register coloring. It constructs the Register
Conflict Graph (RCG), where the set of edges E represents the
conflicts between register banks in the graph GRCG = (V,E),
and the set of vertices V includes all registers along with their
bank information.

(a) Pseudo code

a = vadd (a , b)
a = vsub (a , c)
d = vneg (d)

(b) RIG

d c

b a

(c) RCG

d c

b a

Figure 2: Example code with its corresponding RIG and RCG

Given a code snippet shown in Fig. 2a, the compiler
can construct a corresponding Register Interference Graph
(RIG) as shown in Figure 2b. Additionally, an associated
Register Conflict Graph (RCG) is shown in Fig. 2c, which
happens to be a subgraph of the RIG, representing the bank
conflicts between registers. RCG-based bank assignment could
be employed in the register allocation pipeline to apply bank
conflicts reduction. If the bank assignment phase precedes the
register allocation, it maps virtual registers to specific banks,
limiting their subsequent allocation to registers within the as-
signed bank. This introduces constraints on register allocation
and makes conflict-free assignments more challenging.

(a) Sub-RIGs are both 2-colorable

d

a b

c

BANK 0 : { a , d }
BANK 1 : { b , c }

(b) One sub-RIG is not 2-colorable

d c

b a

BANK 0 : { a }
BANK 1 : { b , c , d }

Figure 3: Two possible bank assignment and the colorabilities
of corresponding sub-RIGs of Figure 2b

Assuming four registers with interleaved indexes distributed
across two banks (BANK0 containing r0, vr2 and BANK1
containing r1, vr3), performing a bank assignment is equiv-
alent to a 2-coloring of the RCG shown in Figure 2c. After
the bank assignment, the RIG simplifies since registers in
different banks no longer interfere with each other. Figure 3a
and Figure 3b display two possible bank assignments and their
corresponding simplified RIGs. Allocating the RIG depicted in
Figure 3a is feasible without bank conflicts due to the sufficient
number of registers in each bank. However, Figure 3b is not
2-colorable, indicating that a conflict-free bank assignment is
not possible without splitting/spilling of registers.

It is noteworthy that the original RIG can be colored using
four colors. However, as the above example shows, a conflict-
free bank assignment poses a challenge in coloring the RIG.
This challenge, known as an “unbalanced” bank assignment,
presents a severe problem in existing RCG-based bank as-
signers, rendering them inapplicable in certain scenarios. The
evident influence of the bank assignment phase on register
allocation necessitates the design of a bank assigner like
PresCount that minimizes the negative impact on register
assignment.

In the following section, we provide a detailed description
of PresCount. We first introduce the overall workflow of our
register allocation pipeline. Next, we present our approach
to model and resolve bank conflicts. Finally, we address the
subgroup constraints in the custom DSA design and propose
a solution that extends bank conflict reduction on DSA.

III. METHODOLOGY

A. Overall workflow

The overall workflow of our register allocation pipeline is
shown in Fig. 4. We proposed novel methods to improve
LLVM’s default register allocator (i.e., the greedy register
allocator) for register bank assignment. To be more applicable
in the real-world scenarios, we applied the improved register
allocation pipeline on our DSA hardware. Given that the
custom DSA hardware has a stricter constraint subgroup align-
ment for register usage (explain in detail later), an optional
phase (dashed module) is therefore proposed for subgroup
splitting for the DSA optimization.

As shown in Fig. 4, there are five phases in the entire
pipeline including two standard components of LLVM, i.e.,
Register Coalescing and Pre-allocation Scheduling denoted in

Register Coalescing

(Optional) SDG-based Subgroup Splitting

Pre-allocation Scheduling

RCG-based Bank Assignment

Enhanced Register Allocation

Figure 4: The combined workflow into LLVM Greedy register
allocation pipeline

white, an Enhanced Register Allocation, and two new phases
as denoted in blue modules:

• RCG-based Bank Assignment is an optimized phase
of building RCG and performing graph coloring which
is served to track the pressure of register banks. The
phase is triggered right after pre-allocation Scheduling,
where a bank assignment of its dedicated register(s) can
be decided after this phase.

• SDG-based Subgroup Splitting is specifically designed
for the custom DSA hardware, which takes LLVM Ma-
chine IR produced by Register Coalescing for building
the Same Displacement Graph (SDG) (explain later), and
collects information of “register grouping” and applies
heuristic methods to split large groups when necessary.
This module is optional for non-DSA hardware.

where, RCG-based Bank Assignment is designed to track the
register bank pressure with a coarse pattern to improve unbal-
anced bank assignment, which is crucial to our bank assigner
design. Such a design is inspired by the naive register pressure
tracking approach with pre-allocation instruction schedulers.

The Enhanced Register Allocation is used to perform reg-
ister assignment in accordance with the bank assignments
decided by the RCG-based Bank Assignment phase. If it targets
on the custom DSA, the Enhanced Register Allocation phase
would additionally conduct subgroup assignments by taking
into account of the register subgroup pressure.

In the register allocation (RA) pipeline, phase ordering plays
a crucial role. To prevent re-coalescing of register copies, the
SDG-based subgroup splitting phase is positioned after Reg-
ister Coalescing. Moreover, to maximize the reuse of existing
live range information, the RCG-based Bank assignment phase
is placed between pre-allocation scheduling and Enhanced
Register Allocation, as it does not modify the information.

A: a = add (b , c)
f o r (i i n 0 t o 99) {

B : b = sub (b , d)
C : e = mul (b , c)

}
D: f = add (e , d)
E : g = add (e , b)

(a) Code with bank conflict

b

c

d

e201

101

101

2
coloring

b

c

d

e

(b) Coloring the cost annotated RCG

Figure 5: Pseudo Code with bank conflicts and the relating
2-coloring process

B. Implement the Bank Assignment

Bank Conflict Cost Estimation. The cost of bank conflicts
depends on the code’s position. Bank conflicts within a loop
have a higher impact on performance and energy consumption
compared to conflicts in infrequently executed loops.

In PresCount, the cost CostI of a bank conflict introduced
by instruction I is defined in Equation 1, where tripcount(i)
represents the total trip count of its i-th enclosing loop within
an n-level loop nest (i ≥ 0, n ≥ 0). The cost CostR of
a bank conflict for register R is calculated by summing the
costs of all instructions that access register r, as showed in
Equation 2. PresCount utilizes CostR value as one judgement
to do prioritized bank assignment, in order to minimize the
runtime instances of bank conflicts.

CostI =

n∏
i=1

trip count(i), where n is the nest level of loops (1)

CostR =

n∑
i=0

Costi(R),where n is the number of I instances (2)

RCG coloring with annotated Costs After annotating regis-
ters with conflict costs, the bank assignment process begins.
Unlike the traditional Chaitin-Briggs coloring method, our
approach generates a prioritized AssignList primarily based
on conflict costs. For example, in Figure 5a, we have five
conflict-relevant instructions (A-E) with their corresponding
RCG in Figure 5b. Nodes in the graph represent registers with
computed conflict costs. Assuming a 2-bank register file, a 2-
coloring is performed on the RCG based on the decreasing
order of register conflict costs, namely b → c → d → e, as
depicted in Figure 5b.

Ultimately, the remaining bank conflict introduced by ac-
cessing register e cannot be eliminated, as it is uncolorable. If
we assume that each conflict produces a 1-cycle delay in the
hardware, it incurs a total overhead of 2 cycles. This represents
the minimum cost introduced when no other optimizations are
applied.
Bank Pressure Counting Heuristic In practice, it is common
to encounter equal conflict costs, especially when bank con-
flicts are predominantly associated with hot arithmetic opera-
tions within the innermost loop. To optimize bank assignments
and ensure the colorability of RIG subgraphs (Chapter II-B),
the concept of bank pressure count is introduced. This count
represents the maximum overlap of register live ranges within
a bank, considering the registers already assigned to that bank.

Algorithm 1: Bank Assignment in PresCount
Data: A RCG with conflicting registers, a bank conflict cost

estimation
Result: A bank assignment of all registers in the RCG
unProcessed← bank conflicting registers;
while unProcessed ̸= ∅ do

workList← {MaxConflictCost(unProcessed)};
while workList ̸= ∅ do

v ← MaxCostDegree(workList);
workList← workList \ {v};
unProcessed← unProcessed \ {v};
availColors← ALLCOLORS \NeighborColors(v);
if availColors ̸= ∅ then

colors← PresCountPrioritize(availColors);
else

regPressure← OverallRegPressure();
if regPressure > THRES then

colors←
PresCountPrioritize(ALLCOLORS);

else
colors←

NeighbourCostPrioritize(ALLCOLORS);
end

end
color ← Front(colors);
AssignColor(v, color);
workList← workList ∪ UncoloredNeighbors(v);

end
end

It serves as a guide for the bank assigner in scenarios where
there are equal choices based on RCG colorability. When a
register can be assigned to multiple banks, the bank with the
minimal pressure count is selected. This approach effectively
resolves uncolorable cases discussed in Chapter II-B.
Algorithm for the bank assignment Algorithm 1 provides
a detailed illustration of the RCG-based bank assignment
process. In practice, the RCG consists of multiple disjoint
sub-graphs. We process each subgraph in descending order
of conflict cost. The graph coloring starts by selecting a node
from the workList based on higher conflict cost, followed
by a higher degree order. This prioritization ensures that
PresCount addresses bank conflict cost before considering
RCG colorability.

The algorithm then excludes any conflicting colors assigned
to the node’s neighbors, creating a prioritized assignment list
(colors) based on the bank pressure count. As mentioned, an
unbalanced bank assignment in the RCG may prevent the
later register allocator from completing a conflict-free bank
assignment, rendering the bank assignment unexpected. Im-
proper handling of bank assignments can also trigger register
spilling during implementation. Thus, it is crucial to evaluate
the bank pressure dynamically to ensure a proper assignment.
The algorithm tests all possible bank assignments and chooses
the bank that adds the least to the bank pressure count for the
register.

Uncolorable nodes are assigned conflicting colors using
heuristics. To trade-off between minimizing register pressure
and reducing bank conflict cost, a comprehensive evaluation of

the overall register pressure (regPressure) comes into play.
This assessment dictates that if the register pressure surpasses
a predefined threshold (THRES), an optimal color is selected
from all the candidates (ALLCOLORS) to minimize the
register pressure. Or else, the heuristic choose the color that
has the least accumulated CostR, with R encompassing all
the neighboring nodes that share this color. It concentrates
on the reduction of penalties related to bank conflicts. Then
PresCount assigns the node with the decided color and up-
dates bank pressure counts accordingly. Finally, any uncolored
neighbor node is added to the workList. And the process
continues iteratively until the workList is empty.

It is worth noting that Algorithm 1 only handles registers
present in the RCG. However, to achieve a balanced bank
assignment, the bank assigner must also consider registers
not present in the RCG but belonging to the same register
class. These registers, often referred to as free registers, need
to be properly handled to prevent the register allocator from
assigning registers from random banks to them. Neglecting the
proper handling of free registers can also lead to an unbalanced
bank assignment.

C. Subgroup Bank Assignment for Custom DSA

Custom DSA and its constraint features for register usage
The DSA discussed in this paper aims to improve the process-
ing efficiency of AI models at a large scale. It addresses the
temporal locality observed in AI operations by incorporating a
large on-chip register file that enables the reuse of intermediate
outputs. The micro-architecture design of the DSA is close
to modern GPUs, but unlike the SIMT, it introduces SIMD
vector instructions with large vector lengths to address the
Instruction-Level Parallelism. Each processing element (PE)
of the DSA has a 128k-bytes vector register file that is di-
vided into 1024 128-bytes vector registers. Two simultaneous
threads share each vector register in a lock-step, shared PC
manner, effectively making the vector register appear as a 64-
byte register for each thread. Similar to GPUs, the multiple-
banked vector registers can experience bank conflicts when
instructions read two vector register operands.

To avoid the complexity and power consumption associated
with implementing a crossbar network for data routing be-
tween the register file and Arithmetic Logic Units (ALUs),
a micro-architecture simplification is adopted. Instead of the
crossbar, a direct 1-1 bank-to-ALU pattern is used with the
primary target of reducing complexity and power consumption.

However, this hardware simplification further subdivides
the multi-banked register file, which makes the register usage
more restrictive. The register file is conceptually structured
as a two-level “bank-subgroup” design, as shown in Figure 6
for the 2-4 bank-subgroup register file. The figure illustrates
how the banks and subgroups are interleaved based on register
indexes, along with the calculation method for determining the
bank and subgroup number of a register based on its register
number.

The bank-subgroup register file imposes two key constraints
on register usage:

Sub 0 Sub 1 Sub 2 Sub 3 Sub 0 Sub 1 Sub 2 Sub 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Bank 0 Bank 1

Register Numbers

bank number = (register number mod 8)÷ 4

subgroup number = register number mod 4

Figure 6: The register number interleaving of banks and
subgroups

(a) SDG

f g

d

e

b

c a

(b) Psuedo code

I1 : v r1 = fadd vr5 , v r9
I2 : v r1 = fadd vr5 , v r13
I3 : v r1 = fadd vr5 , v r10

Figure 7: Bank Conflict and Subgroup Alignment

• The input operands of each instruction must belong to
different banks, known as the bank conflict constraint.

• The subgroup of each instruction’s operands must be
identical, referred to as the “subgroup alignment” con-
straint.

For instance, consider the code in Fig. 7b. The bank/sub-
group numbers for registers vr1, vr5, vr9, vr10, and vr13
are 0/1, 1/1, 0/1, 0/2, and 1/1, respectively. Based on this, we
can analyze the following:

• Instruction I1 satisfies all the constraints and is consid-
ered conflict-free.

• Instruction I2 violates the bank conflict constraint as both
of its input operands are from bank 1.

• Instruction I3 violates the subgroup alignment constraint
because its input operands have different subgroup num-
bers.

Hence, as the register usage is more constrained, it is more
prone to bank conflicts. To mitigate the challenge posed by a
high register conflict ratio and eliminate subgroup alignment
violations, the subsequent subsections present optimization
methods that are necessary for addressing these issues.
SDG for the Subgroup Alignment The subgroup alignment
constraint is represented using the Same Displacement Graph
(SDG). The SDG, denoted as GSDG = (V,A), is a directed
graph where the vertex set V comprises all registers that
require subgroup alignment, and the set A consists of ordered
pairs representing alignment constraints among subgroups.
The directed edges connect input operands to output operands,
indicating that the connected vertices share the same displace-
ment alignment requirement. Each edge points from an input
operand to the corresponding output operand of the instruction.

Algorithm 2: Generating Register Allocation Hints
to Ensure Bank Assignment and Subgroup Alignment
Constraint

Data: Register bank assignment registerBanks, subgroup
displacement assignment groupDispls, virtual
register v

Result: Allocation hints Hints for the virtual register v
if v /∈ registerBanks then

/* Handle split-generated register */
end
bank ← registerBank[v];
subGroup← FindASubGroupContains(v);
if subGroup ∈ groupDispls then

displ← groupDispls[subGroup];
else

displ← groupDispls[MinUsed(ALLSUBGROUPS)];
groupDispls[subGroup]← displ;
/* Increase the usage of subGroup by

its size */
end
Hints← FindAllRegistersConforming(bank, displ);

Balanced subgroup assignment Subgroup assignment is an
integral part of the register allocation process. In our im-
plementation, register bank assignments are determined be-
fore subgroup assignments. Algorithm 2 outlines the pseudo-
implementation of subgroup assignment during register allo-
cation using register hints. The algorithm monitors register
assignments, tracks subgroup utilization, and guides the regis-
ter allocator to assign registers with less-used subgroups. The
balance of subgroups is maintained through the bookkeeping
performed by groupDispls and the selection of the minimum-
used subgroup in the function MinUsed. The Hints list for
bank assignment contains physical register candidates derived
from subgroup assignment. The existing register allocation
mechanism utilizes Hints while considering register live-
range interference to complete the assignment. This ensures
the satisfaction of bank conflict, subgroup, and live-range
interference constraints.

Algorithm 2 does not provide details on other interac-
tions within register allocation operations, such as register
reassignment, register splitting, and register spill. Register
splitting, in particular, can be problematic as it introduces new
virtual registers with shorter live ranges. To maintain subgroup
alignment, newly created registers must be assigned the same
subgroup as the registers they are copied from, necessitating
dynamic subgroup management in certain cases.
SDG-based subgroup splitting It is not uncommon to en-
counter large subgroups consisting of a significant number of
registers. However, having such large subgroups often leads
to unbalanced subgroup assignments. To address this issue,
subgroup splitting is employed to avoid this situation. We have
identified two primary schemes for large subgroups:

• Input Sharing: Operations that share the same input
operand, such as the “a” operand in Figure 8.

• Output Sharing: Operations that involve value reduction
and commonly share the output, as seen in the “a”

a = . . .
b = vadd (c , a)
d = vadd (e , a)
f = vadd (g , a)
h = vadd (i , a)
j = vadd (k , a)
l = vadd (m, a)

a b

df

h

j l
m

c

e

g

i

k a = . . .
a1 = a
b = vadd (c , a)
d = vadd (e , a)
f = vadd (g , a)
h = vadd (i , a1)
j = vadd (k , a1)
l = vadd (m, a1)

Figure 8: Example to resolve the “Input Sharing”

a = vadd (b , a)
a = vadd (c , a)
a = vadd (d , a)
a = vadd (e , a)
a = vadd (f , a)
a = vadd (g , a)

a b

cd

e

f g

a = vadd (b , a)
a = vadd (c , a)
a = vadd (d , a)
a1 = a
a1 = vadd (e , a1)
a1 = vadd (f , a1)
a1 = vadd (g , a1)

Figure 9: Example to resolve the “Output Sharing”

operand in Figure 9.

Figures 8 and 9 provide examples of resolving the scenarios
of input sharing and output sharing, respectively. In both
cases, a single subgroup encompasses all the registers. The
input sharing scenario exhibits a “centered” vertex with a high
number of outgoing edges, while the output sharing scenario
features a “centered” vertex with a significant number of
incoming edges.

To address the subgroup with a high number of outgoing
edges (6) in Figure 8, a copy instruction is introduced to divide
the graph into two groups, each consisting of three vertices. A
similar splitting heuristic is applied as illustrated in Figure 9.
This approach effectively creates balanced subgroups during
the assignment process (Algorithm 2), ensuring even subgroup
assignments.

IV. EXPERIMENTS AND RESULTS

A. Experiment Settings and Metrics

1) Test suites: We evaluated our approach using three
distinct test suites: SPECfp, CNN-KERNEL, and DSA-OP.
SPECfp includes compute-intensive floating-point tests from
the SPEC CPU benchmark, with a focus on eight tests
primarily written in the C/C++ programming languages. The
CNN-KERNEL test suite consists of 64 kernels from a Con-
volutional Neural Network called MobileNet, which includes
commonly used AI computing kernels such as convolution,
pooling, and activation. Finally, the DSA-OP test suite is
designed to run on DSA hardware and contains C/C++ im-
plementations of high-performance handwriting AI computing
kernels, including element-wise, reduction, and special opera-
tions such as the Inverse Discrete Fourier transform (IDFT).

Table I provides a summary of the test suites used in our
evaluation, including information about executable generated,
modules compiled, functions compiled, conflict-relevant in-
structions, and floating-pointer register spills using default

Table I: Characteristics of SPECfp and CNN-KERNEL

Benchmark Exes Mods Fns Reles Sp32 Sp1k

SPECfp.433.milc 1 68 235 1,730 2 2
SPECfp.435.gromacs 1 131 925 10,143 130 145
SPECfp.444.namd 1 11 94 9,012 381 29
SPECfp.447.dealII 1 116 7,373 19,191 1,197 74
SPECfp.450.soplex 1 63 1,240 2,741 9 11
SPECfp.453.povray 1 100 1,537 19,749 171 173
SPECfp.470.lbm 1 2 17 672 0 0
SPECfp.482.sphinx3 1 44 318 361 0 0
CNN.conv2d.relu† 42 2 5 1,089 1.2 0.1
CNN.avg.pool2d† 6 2 6 1,010 0 0
CNN.max.pool2d† 6 2 5 326.8 0 0
CNN.other† 3 2 5 41.7 0 0

Exes - Executables. Mods - Modules. Fns - Functions. Reles - Conflict-
relevant instructions. Sp32 - Spillings on RV-Platform#1. Sp1k - Spillings
on RV-Platform#2.
† Values in the columns (excluding “Exes”) represent the geometric mean
value of conflict-relevant executables. Conflict-irrelevant executables are
excluded from the calculations.

LLVM register allocation. In contrast to SPECfp, the CNN-
KERNELs are categorized based on the operation semantics
of each program due to the large number of executables.
Therefore, we report the geometric mean values to represent
the CNN-KERNELs of the same operation. However, since
most of the CNN-KERNELs consist of only a few floating-
point arithmetic operations within multiple-level loop nests,
it results in insufficient bank pressure. To address this, we
manually unroll the loops to obtain different numbers of
conflict-relevant instructions, thereby creating different levels
of bank pressure.

2) Platforms: Two platforms, Platform-RV and Platform-
DSA, were used for experiments with different objectives.
Platform-RV was used to test the generality of the PresCount
method and compare it with different implementations.
Platform-DSA was used to test the PresCount method on
a specific banked-and-subgrouped DSA register design to
reveal how the method performs on a stricter register micro-
architecture design. The following describes the RV platform
in detail.

a) Platform-RV: has an LLVM/Clang (11.0.0) compiler
equipped with our PresCount register allocation method that
compiles programs to riscv-64 target executables. Two settings
were used for the experiments. Setting #1 had 1024 floating-
point registers, which were either 2, 4, or 8 banked, with
512, 256, and 128 registers for each bank. This setting is
similar to some GPU architectures where a program can access
rich registers in each bank. Setting #2 by default had 32
registers, which is consistent with riscv-64 Instruction Set
Architecture(ISA). The assumed bank setting includes 2 and
4, with 16 and 8 registers in each bank. This setting covers
situations where the register count is tight in a single bank,
which is also observed in some GPU and CPU architectures.
An LLVM pass was developed to collect static statistics of
bank-conflict count, register spill count, etc., at compilation
time. QEMU (7.0.50) simulator was used to run the riscv-64
executable. The trace generated by analyzing the trace reported

milc gromacs namd dealII soplex povray lbm sphinx3
conv2d.relu

avg.pool2d
max.pool2d

cnn.others0

0.2

0.4

0.6

0.8

benchmarks

N
or

m
al

iz
ed

C
on

fli
ct

s

2-non 2-bcr 2-bpc 4-non 4-bcr 4-bpc 8-non 8-bcr 8-bpc

(a) Normalized bank conflicts with varying bank counts: The ‘N’ in the legends indicates the register file
is N-banked.

benchmark baseline

milc 645
gromacs 3618
namd 3934
dealII 7738
soplex 810
povray 7103
lbm 321
sphinx3 118
conv2d.relu 57.12
avg.pool2d 0
max.pool2d 13.57
cnn.other 9.03

(b) Maximum bank conflict
count of SPECfp bench-
marks

Figure 10: Static bank conflicts with different bank counts in SPECfp: Comparing non,bcr,brc and bpc on Platform-RV#1

dynamic instances of bank-conflict for Setting #21.
Four different register allocation methods were compared:
• non: Applies the default LLVM register allocation with-

out mitigating register bank conflicts.
• bcr: Applies a greedy bank assignment method inside

the LLVM register allocator by register hinting, partly
mimicking the Intel Graphic Compiler’s bank conflict
reduction (bcr) method, but without consideration of
inter-threading bank-conflict reduction.

• bpc: Applies bank assignment with our PresCount
method for the register allocation. It applies the liveness-
conflict-counting heuristic to track bank pressure at bank
assignment.

Experiments performed on platform-RV collected the statis-
tics including bank conflicts and register spills, in order to
evaluate the effectiveness of bank-conflict mitigation, and also
its impact on the existing register allocator.

b) Platform-DSA: also has LLVM/Clang (11.0.0) com-
pilers with the PresCount method but including the SDG sub-
group alignment functionality. It compiles high-performance
AI kernels to work on real custom DSA hardware where its
vector registers are 2-4 banked. We evaluate “non” and “brc”
implementations to compare metrics including bank conflict,
register copy, register spilling as well as precise cycles.

B. Results

1) Results of Plaform-RV#1: Figure 10a compares the
normalized bank conflicts for various SPECfp and CNN-
KERNEL benchmarks. The maximum static bank conflict
count for each benchmark is shown in Figure 10b, with color-
filled bars representing the results for 2/4/8-banked non. The
graph clearly demonstrates a decrease in bank conflicts as the
number of banks increases, indicating the effectiveness of the
hardware method for reducing bank conflicts. The reduction
follows a linear trend, with conflicts halving when the bank
count is doubled. The cross-hatched bars represent the results
of bcr register allocation, while the blocks bars represent bpc.

1We limited the dynamic instance collection to Setting #2 since the register
count is consistent between the compiler and simulator.

Both methods effectively reduce bank conflicts across different
bank settings compared to the baseline (non). Notably, CNN-
KERNEL cases tend to exhibit higher reductions, which
indicates that the methods perform well when dealing with
tests that have small conflict-relevant instructions, as CNN-
KERNEL cases have plenty of such cases.

Table II: Comparing Conflicts and Reductions of RA Methods
in the Combined SPECfp and CNN-KERNEL Benchmarks
with Different Bank Settings

BANK CONFS
Reduction

IMPV
bcr bpc

2 33374 27777 30663 2886
4 10023 6616 8426 1810
8 4815 3684 4084 400

BANK - bank count. CONFS - conflict count. IMPV - bpc conflict count
improvement over the bcr method.
* The conflicts and reductions are calculated based on the combined
SPECfp and CNN-KERNEL benchmarks.

TABLE II demonstrates the effectiveness of different RA
methods. The bcr method achieves an overall bank conflict
reduction of 94.16%, 76.51%, and 73.23% for the 2/4/8 bank
settings (geometric mean). However, the bpc implementations
yield even better results in all settings. Compared to the
baseline of bcr, bpc achieves conflict reduction improvements
of 51.21%, 38.64%, and 40.98% (geometric mean) respec-
tively, indicating exceptionally high bank conflict reduction
performance.

Table III: Platform-RV#1: Comparing the bank conflict reduc-
tion with spilling increment

BK-IMPL 2-bcr 2-bpc 4-bcr 4-bpc 8-bcr 8-bpc

SPEC.CR 19411 21738 7732 8442 3785 3985
SPEC.SI 8 45 2 82 21 144
CNN.CR 8366 8925 -1116 -16 -101 93
CNN.SI 0 1 2 82 2 175

BK-IMPL - Bank setting and the register allocation implementations.
CR - Bank conflict reduction count, which is the average of all reduction
values. SI - Register spilling increment count.

milc gromacs
namd dealII soplex povray lbm

sphinx3
conv2d.relu

avg.pool2d
max.pool2d

cnn.others
0

0.2

0.4

0.6

0.8

1

benchmarks

N
or

m
al

iz
ed

C
on

fli
ct

s

2-non 2-bcr 2-bpc 4-non 4-bcr 4-bpc

(a) Normalized bank conflicts with varying bank counts: The ‘N’ in the legends indicates the register file
is N-banked.

benchmark base-count

milc 652
gromacs 1681
namd 2241
dealII 1213
soplex 211
povray 1435
lbm 429
sphinx3 282
conv2d.relu 107.73
avg.pool2d 0
max.pool2d 1.20
cnn.others 16.18

(b) Maximum bank conflict count
of SPECfp benchmarks

Figure 11: Dynamic bank conflicts with different bank counts in SPECfp: Comparing non,bcr,brc and bpc on Platform-RV#2

TABLE III provides a comparison of the reductions in
bank conflicts with the increments in register spilling, ad-
dressing concerns about the potential side effects of bank
assignment. From an execution cycle perspective, the increase
in register spills often does not offset the benefits of conflict
reduction in many architectures. In the 2-bank setting, bpc
achieves significant conflict reduction with minimal spill in-
crease compared to bcr. For the 8-bank setting, bcr controls
spills better and may be more beneficial. Notably, negative
conflict reductions are observed in CNN cases due to some
convolution cases of CNN-KERNEL with high bank-conflict
relevant instructions(approximately 5000) were the primary
contributing factor. PresCount, accounting for bank pressure,
enables more conflict-free assignment than bcr consequently.

2) Results of Platform-RV#2: In Fig.11, we present a com-
parison of different RA methods for Platform-RV#2, where
the register budget is tight in each bank. As mentioned in
Chapter IV-A2, we collected dynamic bank conflict instances.
Therefore in Fig. 11 illustrates the dynamic instances of
bank conflicts. Similar to Platform-RV#1, both bcr and bpc
demonstrate significant reduction in bank conflicts, although
not as much as when rich bank registers are available.This
reduction is particularly noticeable in cases such as gromacs
and dealII. Nonetheless, the reduction is still beneficial given
the significant count of bank conflicts.

Table IV: Comparing Conflicts and Reductions of RA Methods
in the Combined SPECfp and CNN-KERNEL Benchmarks
with Different Bank Settings

BANK-METHOD CONFS
Reduction

IMPV
bcr bpc

2-STATIC 32432 23677 26898 3211
2-DYNAMIC 21457 14956 16653 1697
4-STATIC 9472 5470 5648 178
4-DYNAMIC 3461 -121 442 521

BANK-METHOD - bank count and RA method. CONFS - conflict count.
IMPV - bpc conflict count improvement over the bcr method.
* The conflicts and reductions are calculated based on the combined
SPECfp and CNN-KERNEL benchmarks.

Detailed reduction statistics are presented in TABLE IV.
In the 2-bank setting, the number of dynamic instances is

only half of the static instances, while for bank conflict
reduction, it is nearly tripled. The geomean reduction shows
an improvement of 59.75% and 18.99% over bcr for the 2-
bank and 4-bank settings, respectively, in static execution.
However, in dynamic execution, the improvement is only
22.36% and 15.19%. This gap can be attributed to the fact
that dynamic execution only runs a portion of the code,
leading to an exaggeration of encountered conflicts and a
neglect of unexecuted instances. Nevertheless, considering that
compilers cannot predict many runtime behaviors, static bank
reduction remains valuable for evaluating conflict reduction
effectiveness.

Table V: Comparing the bank conflict reduction with spilling
increment

BK-IMPL 2-bcr 2-bpc 4-bcr 4-bpc

SPEC.CR 17722 19578 6947 7196
SPEC.SI 74 177 156 552
CNN.CR 5955 7320 -1477 -1548
CNN.SI -7 -8 -6 13

BK-IMPL - Bank setting and the register allocation implementations.
CR - Bank conflict reduction. SI - Register spilling increment.

The bank conflict reduction count was compared against
the spill increment count in TABLE V. Similar to the previ-
ous experiment, the spill increment count is generally much
smaller than the instances of conflict reduction. However, for
the 4-bank setting, the gap becomes closer, and both bcr and
bpc result in negative reduction. This can be attributed to the
fact that as the register budget decreases, there is a significant
increase in register re-assignment, splitting, spilling, and other
RA operations. This makes it more challenging for the heuris-
tic method to maintain consistency with the register allocation
behaviors, leading to inefficient bank assignment.

3) Result of Platform-DSA: Lastly, we evaluate the DSA-
OP workload tailored for our 2-4 banked DSA architecture
to investigate the potential co-design opportunities for register
architecture. Since the bcr method cannot align subgroups on
the Platform-DSA, we compare the performance of bpc with
the default register allocation (non), assuming different register
bank configurations. This comparison allows us to assess how

Table VI: Compare bank conflicts bewteen bpc and non with
multiple bank settings

DSA-OP BASE Conflict Ratio (%)
2x4-bpc 2-non 4-non 8-non 16-non

reduce 5 0 100 60 40 20
red-ur 50 0 100 50 24 12
shruse 10 0 100 100 100 100
sr-ur 200 0 100 100 100 100
dw-conv2d 9 0 100 33.33 0 0
tr18987 175 0.57 100 44.57 22.86 10.86
tr15651 512 0 100 50 25 12.5
idft 16269 0 100 48.84 24.78 12.43

average 98.92 0.07 100 59.22 38.2 28.72

BASE - the baseline bank conflict count. 2x4-bcp - the register file is 2-4
bank-subgrouped. The bcp method is applied in the register allocation.
2/4/8/16-non - the register file is 2/4/8/16 banked. The default register
allocation is applied.

well bpc and associated simplified hardware is, compared with
more sophisticated hardware design.

The experimental results are presented in TABLE VI. In
comparison to the hardware solution, PresCount achieves
comparable or even better bank reductions in the given bench-
mark on the 2-4 banked DSA. As observed from 2x4-bpc,
it eliminates nearly all bank conflicts (except tr18987) and
reaches a geomean reduction of 99.85%. On the other hand,
we observed from 2/4/8/16-non that increasing the bank count
physically alone generally results in fewer bank conflicts yet
fails to eliminate them in most cases (except dw-conv2d). The
leading performer, 16-non, typically achieves a reduction of
around 90% in bank conflicts. This can be attributed, in part,
to PresCount’s effectiveness in doing conflict-free assignments
with a large register count.

Table VII: Spills, copies and cycles of bpr and 2/4-non on
Platform-DSA.

DSA-OP
Spills Copies Cycles

bpc 2/4-non bpc 2/4-non bpc 2-non 4-non

reduce 0 0 0 0 89 93 91
red-ur 0 0 0 0 719 768 743
shruse 0 0 0 0 233 233 233
sr-ur 0 0 0 0 4603 4603 4603
dw-conv2d 0 0 0 0 126 124 124
tr18987 0 0 0 0 253 239 239
tr15651 0 0 14 96 2777 3991 3993
idft 2 0 2936 193 16843 16270 16269

bcp - The bcp method is applied in the register allocation for the 2-4
bank-subgrouped register file. 2/4-non - The default register allocation is
applied for a either 2-banked or 4-banked register file.

TABLE VII presents the cost associated with bank conflict
reduction, including register spills, register copies, and cycles.
As observed in benchmark reduce, red-ur, and tr15651, re-
ducing bank conflicts, which increase the latency of generating
instruction output, is beneficial for the cycle count of compute-
intensive kernels that yield single results from multiple inputs.
However, for certain data-parallel workloads, despite notable
reductions in bank conflicts, the performance impact remains
minor due to the AI DSA’s capability of parallelizing inde-
pendent data computations. Benchmarks such as shruse, su-ur

and tr18987 exemplify this scenario. In cases like tr15651 and
idft, where substantial bank and subgroup pressure exists, the
subgroup splitting heuristic is invoked to avoid register spills.
tr15651, benefiting from fewer copies due to the heuristic and
register coalescing optimization, showcases a positive impact
on runtime performance. However, idft experiences a cycle
increase due to the substantial copies generated, even though
spills are reduced significantly. Given the restrictive register
file usage, such trade-offs could be justified from a hardware-
software co-design perspective.

Furthermore, the architecture-specific VLIW bundle con-
straint occasionally leads to cycle changes, as it forbids
bundling instructions accessing the same bank, affecting in-
struction scheduling. This constraint negatively affects dw-
conv2d and tr18987, rendering performance declines. How-
ever, it is challenging to address such inter-instruction restric-
tions with RCG. We plan to tackle it for future improvements.

V. RELATED WORK

Large register files are segmented into SIMD vectors and
utilized to mark fundamental paradigms in modern com-
puting architectures. GPUs efficiently harness these vector
registers through thread sharing, while CPUs leverage them
via explicit programming or the auto-vectorization process,
like loop vectorization [14], [15], superword-level-parallelism
(SLP) vectorization [16]–[18], etc.

Notably, multi-banked register file [19] has been extensively
studied in GPU architectures as GPU have a larger register file
than CPU [20]. There are many GPU software/hardware co-
design researches to address register reuse and underutiliza-
tion. Gebhart et al. proposed a compiler-controlled register
file hierarchy in their Operand Register File (ORF) study
[5] as an alternative to Register File Cache (RFC) [21].
Esfeden et al. [22] combined compiler register allocation
and register coalescing hardware to reduce register reads.
J. Klosterman et al. accelerated access to short live-range
operands by preloading instruction operands into a staging unit
with compiler hints [23]. Xie et al. tried to address register file
underutilization through exploration of register allocation and
thread throttling on GPUs [24]. C. Yu et al. extended GPU
registers to scratchpad memory to improve utilization of the
register file [25].

Register allocation has been researched extensively for
decades. Chaitin et al. implemented the first register allocator
that viewed register allocation as a graph coloring problem [7].
Briggs et al. enhanced the register spilling with an optimistic
coloring method [26]. Polleto et al. developed the linear scan
approach to improve the time complexity [27].

Some GPU compilers, however, prefer register allocators
based on SSA-form as it is capable of identifying the register
required in polynomial time to facilitate dynamical thread-
level register allocation [28]. Hack et al. were among the first
researchers to demonstrate that the interference graph of an
SSA program is chordal, thus coloring, spilling, and coalescing
can be separated in SSA-based programs [29]. Pereira et

al. observed that the majority of Java Library methods offer
chordal interference graphs [30].

All aforementioned register allocation approaches tried to
address live range interference. Additional architectural reg-
ister limitations are modeled as live range interference [7].
Scholz et al. formulated the global register allocation problem
for irregular architectures as Partitioned Boolean Quadratic
Problems (PBQP) under a heuristic approach that tried to
this NP-complete problem in linear runtime complexity [31].
Hames et al. proposed a heuristic and a branch-and-bound
solver to enhance the register allocation quality [32]. LLVM
[33] adopts PBQP register allocator to address irregularity like
register aliasing, register pairing, etc [34].

RCG-based register allocation is commonly employed to
handle the irregularity of register bank conflicts. Although an
RCG is a subgraph of RIG [8], it is built independently for
bank assignment purposes. Pre-allocation and post-allocation
methods are used to integrate RCG-based bank assignments
into a register allocator. F. Zhou et al. [9] built the RCG ahead
of the register assignment using a cost evaluation approach
and a live-range splitting method for a 2-banked register
file. proved that building an RCG bipartite with minimal
effort is NP-complete [10]. The unbalanced bank assignments
and register spills in the pre-allocation method can result
in poor register allocation quality. Patney et al. selected
post-allocation register renumbering despite the RCG being
harder to color where massive register copies are generated to
split an uncolored RCG and align subgroups, which requires
many unassigned registers as a consequence [8]. The Latency-
Tolerant Register File (LTRF) proposed by Sadrosadat et al.
constructed an Interval Conflict Graph (ICG) and renumbered
physical registers in distinct intervals to avoid bank conflicts
[3], [35]. However, it has similar limitations as the post-
allocation method.

Intel Graphics utilized a bank-conflict-reduction (BCR)
heuristic to assign instruction operands to different banks only
when feasible at register allocation time to avoid register
spilling and to mitigate bank conflicts [12]. However, it
does not model bank conflict restrictions more than a single
instruction.

Regarding register pressure tracking, which is used to avoid
register spilling while increasing ILP, many heuristic methods
have been applied in pre-allocation instruction scheduling.
Touati proposed a register saturation (RS) analysis with limited
simultaneous live ranges in Data Dependence Graph (DDG)
[36]. Similarly, Gavindarajan et al. used a coloring method on
Lineage Interference Graph (LIG) to find Heuristic Register
Bound (HRB) to achieve a similar goal [37].

VI. CONCLUSION

In this study, we addressed the bank conflict problem in
multi-banked register files and proposed effective solutions.
Our experiments confirmed the prevalence of bank conflicts
in systems with multi-banked register files. To mitigate per-
formance degradation and runtime overhead caused by bank
conflicts, we introduced the PresCount method, which utilizes

RCG-based bank assignment and bank pressure tracking.
The results demonstrated superior performance compared to
existing methods. Additionally, we presented a novel subgroup
assignment technique that enabled our custom DSA to achieve
performance on par with fully banked register file architec-
tures, despite having a simplified micro-architecture.

We observed that tracking bank pressures proved to be a
valuable heuristic for achieving balanced bank assignments,
and early splitting of shared values played a critical role
in achieving balanced subgroup assignments. Future research
could focus on further enhancing these heuristics, as the
current register allocation process may encounter challenges
under high register bank pressure. Moreover, investigating the
incorporation of PresCount with other RA methods could offer
further insights.

VII. ACKOWNLEDGEMENT

We extend our gratitude for the support received from vari-
ous sources, including the National Key Research & Develop-
ment Program of China (No. 2022YFB4500103), Programs for
NSFC (No. 62032008), STCSM (No. 23511100100), Shanghai
Pujiang Program (22PJ1422000), and Shanghai Rising-Star
Program (22QB1404600). Jianguo Yao is the corresponding
author.

Special thanks are extended to Chunling Hu for expertly
guiding the finalization process. Additionally, we deeply ap-
preciate the anonymous reviewers whose insightful feedback
significantly contributed to enhancing this work.

Moreover, we acknowledge the contributions of Chuang
Feng and Yuanzhi Hua for their insights into register file
micro-architecture, Zhongjun Zhang for his involvement in
the CNN-KERNEL benchmark work, and Dr. Heng Shi for
his invaluable suggestions during the paper writing process.

REFERENCES

[1] A. M. Radaideh and P. V. Gratz, “Exploiting zero data to reduce register
file and execution unit dynamic power consumption in gpgpus,” in
Proceedings of the 57th ACM/EDAC/IEEE Design Automation Confer-
ence, ser. DAC ’20. IEEE Press, 2020, doi:10.1109/DAC18072.2020.
9218547.

[2] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M.
Aamodt, and V. J. Reddi, “Gpuwattch: Enabling energy optimizations
in gpgpus,” in Proceedings of the 40th Annual International Symposium
on Computer Architecture, ser. ISCA ’13. New York, NY, USA:
Association for Computing Machinery, 2013, p. 487–498, doi:10.1145/
2485922.2485964.

[3] M. Sadrosadati, A. Mirhosseini, A. Hajiabadi, S. B. Ehsani, H. Falahati,
H. Sarbazi-Azad, M. Drumond, B. Falsafi, R. Ausavarungnirun, and
O. Mutlu, “Highly concurrent latency-tolerant register files for gpus,”
ACM Trans. Comput. Syst., vol. 37, no. 1–4, jan 2021, doi:10.1145/
3419973.

[4] N. Jing, S. Chen, S. Jiang, L. Jiang, C. Li, and X. Liang, “Bank stealing
for conflict mitigation in gpgpu register file,” in 2015 IEEE/ACM Inter-
national Symposium on Low Power Electronics and Design (ISLPED),
2015, pp. 55–60, doi:10.1109/ISLPED.2015.7273490.

[5] M. Gebhart, S. W. Keckler, and W. J. Dally, “A compile-time managed
multi-level register file hierarchy,” in Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO-
44. New York, NY, USA: Association for Computing Machinery, 2011,
p. 465–476, doi:10.1145/2155620.2155675.

[6] M. Mao, W. Wen, Y. Zhang, Y. Chen, and H. Li, “Exploration of
gpgpu register file architecture using domain-wall-shift-write based
racetrack memory,” in 2014 51st ACM/EDAC/IEEE Design Automation
Conference (DAC), 2014, pp. 1–6, doi:10.1145/2593069.2593137.

[7] G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins,
and P. W. Markstein, “Register allocation via coloring,” Computer
languages, vol. 6, no. 1, pp. 47–57, 1981.

[8] A. P. et al., “Conflict-free register allocation using a multi-bank register
file with input operand alignment,” 2013, uS Patent 8,555,035.

[9] F. Zhou, J. Zhang, C. Wu, and Z. Zhang, “A register allocation
framework for banked register files with access constraints,” vol. 3740,
10 2005, pp. 269–280, doi:10.1007/11572961 22.

[10] X. Zhuang and S. Pande, “Resolving register bank conflicts for a network
processor,” in Proceedings of the 12th International Conference on Par-
allel Architectures and Compilation Techniques, ser. PACT ’03. USA:
IEEE Computer Society, 2003, p. 269, doi:10.1109/PACT.2003.1238022.

[11] M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keckler, W. J. Dally,
E. Lindholm, and K. Skadron, “A hierarchical thread scheduler and
register file for energy-efficient throughput processors,” ACM Trans.
Comput. Syst., vol. 30, no. 2, apr 2012, doi:10.1145/2166879.2166882.

[12] W.-Y. Chen, G.-Y. Lueh, P. Ashar, K. Chen, and B. Cheng, “Register
allocation for intel processor graphics,” in Proceedings of the 2018 In-
ternational Symposium on Code Generation and Optimization, ser. CGO
2018. New York, NY, USA: Association for Computing Machinery,
2018, p. 352–364, doi:10.1145/3168806.

[13] J. Yao, H. Zhou, Y. Zhang, Y. Li, C. Feng, S. Chen, J. Chen, Y. Wang,
and Q. Hu, “High performance and power efficient accelerator for cloud
inference,” in 2023 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). IEEE, 2023, pp. 1003–1016, doi:10.
1109/HPCA56546.2023.10070941.

[14] D. Nuzman, I. Rosen, and A. Zaks, “Auto-vectorization of interleaved
data for simd,” in Proceedings of the 27th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’06.
New York, NY, USA: Association for Computing Machinery, 2006, p.
132–143, doi:10.1145/1133981.1133997.

[15] A. E. Eichenberger, P. Wu, and K. O’Brien, “Vectorization for simd
architectures with alignment constraints,” in Proceedings of the ACM
SIGPLAN 2004 Conference on Programming Language Design and
Implementation, ser. PLDI ’04. New York, NY, USA: Association for
Computing Machinery, 2004, p. 82–93, doi:10.1145/996841.996853.

[16] S. Larsen and S. Amarasinghe, “Exploiting superword level parallelism
with multimedia instruction sets,” SIGPLAN Not., vol. 35, no. 5, p.
145–156, may 2000, doi:10.1145/358438.349320.

[17] H. Zhou and J. Xue, “A compiler approach for exploiting partial simd
parallelism,” ACM Trans. Archit. Code Optim., vol. 13, no. 1, mar 2016,
doi:10.1145/2886101.

[18] H. Zhou and J.Xue, “Exploiting mixed simd parallelism by reducing
data reorganization overhead,” in Proceedings of the 2016 International
Symposium on Code Generation and Optimization, ser. CGO’16, 2016,
p. 59–69, doi:10.1145/2854038.2854054.

[19] J.-L. Cruz, A. González, M. Valero, and N. Topham, “Multiple-banked
register file architectures,” vol. 28, 02 2000, pp. 316 – 325, doi:10.1145/
339647.339708.

[20] M. A. Ibrahim, O. Kayiran, Y. Eckert, G. H. Loh, and A. Jog, “Analyzing
and leveraging decoupled l1 caches in gpus,” in 2021 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), 2021,
pp. 467–478, doi:10.1109/HPCA51647.2021.00047.

[21] M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keckler, W. J. Dally,
E. Lindholm, and K. Skadron, “Energy-efficient mechanisms for man-
aging thread context in throughput processors,” in 2011 38th Annual
International Symposium on Computer Architecture (ISCA), 2011, pp.
235–246, doi:10.1145/2000064.2000093.

[22] H. Asghari Esfeden, F. Khorasani, H. Jeon, D. Wong, and N. Abu-
Ghazaleh, “Corf: Coalescing operand register file for gpus,” in Pro-
ceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, ser. ASP-
LOS ’19. New York, NY, USA: Association for Computing Machinery,
2019, p. 701–714, doi:10.1145/3297858.3304026.

[23] J. Kloosterman, J. Beaumont, D. A. Jamshidi, J. Bailey, T. Mudge,
and S. Mahlke, “Regless: Just-in-time operand staging for gpus,” in
Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO-50 ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 151–164, doi:10.1145/
3123939.3123974.

[24] X. Xie, Y. Liang, X. Li, Y. Wu, G. Sun, T. Wang, and D. Fan, “Enabling
coordinated register allocation and thread-level parallelism optimization
for gpus,” in Proceedings of the 48th International Symposium on
Microarchitecture, ser. MICRO-48. New York, NY, USA: Association
for Computing Machinery, 2015, p. 395–406, doi:10.1145/2830772.
2830813.

[25] C. Yu, Y. Bai, Q. Sun, and H. Yang, “Improving thread-level parallelism
in gpus through expanding register file to scratchpad memory,” ACM
Trans. Archit. Code Optim., vol. 15, no. 4, nov 2018, doi:10.1145/
3280849.

[26] P. Briggs, K. D. Cooper, and L. Torczon, “Improvements to graph
coloring register allocation,” ACM Trans. Program. Lang. Syst., vol. 16,
no. 3, p. 428–455, may 1994, doi:10.1145/177492.177575.

[27] M. Poletto and V. Sarkar, “Linear scan register allocation,” ACM Trans.
Program. Lang. Syst., vol. 21, no. 5, p. 895–913, sep 1999, doi:10.1145/
330249.330250.

[28] C. Abbott and D. Schürmann, “SSA-based register allocation for
gpu architectures,” 2021, x.Org Developer Conference 2021. [Online].
Available: https://indico.freedesktop.org/event/1/contributions/7/

[29] S. Hack and G. Goos, “Optimal register allocation for ssa-form programs
in polynomial time,” Inf. Process. Lett., vol. 98, no. 4, p. 150–155, may
2006.

[30] F. M. Q. Pereira and J. Palsberg, “Register allocation via coloring
of chordal graphs,” in Programming Languages and Systems, Third
Asian Symposium, APLAS 2005, Tsukuba, Japan, November 2-5, 2005,
Proceedings, ser. Lecture Notes in Computer Science, K. Yi, Ed., vol.
3780. Springer, 2005, pp. 315–329, doi:10.1007/11575467 21.

[31] B. Scholz and E. Eckstein, “Register allocation for irregular architec-
tures,” in Proceedings of the Joint Conference on Languages, Compilers
and Tools for Embedded Systems: Software and Compilers for Embedded
Systems, ser. LCTES/SCOPES ’02. New York, NY, USA: Associa-
tion for Computing Machinery, 2002, p. 139–148, doi:10.1145/513829.
513854.

[32] L. Hames and B. Scholz, “Nearly optimal register allocation with pbqp,”
in Proceedings of the 7th Joint Conference on Modular Programming
Languages, ser. JMLC’06. Berlin, Heidelberg: Springer-Verlag, 2006,
p. 346–361, doi:10.1007/11860990 21.

[33] C. Lattner and V. Adve, “Llvm: a compilation framework for lifelong
program analysis transformation,” in International Symposium on Code
Generation and Optimization, 2004. CGO 2004., 2004, pp. 75–86,
doi:10.1109/CGO.2004.1281665.

[34] F. M. Q. Pereira, “A survey on register allocation,” Tech. Rep., 2008.
[35] M. Sadrosadati, A. Mirhosseini, S. B. Ehsani, H. Sarbazi-Azad,

M. Drumond, B. Falsafi, R. Ausavarungnirun, and O. Mutlu, “Ltrf:
Enabling high-capacity register files for gpus via hardware/software
cooperative register prefetching,” in Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 489–502,
doi:10.1145/3173162.3173211. [Online]. Available: https://doi.org/10.
1145/3173162.3173211

[36] S.-A.-A. Touati, “Register saturation in instruction level parallelism,”
International Journal of Parallel Programming, vol. 33, no. 4, pp. 393–
449, 2005, doi:10.1007/s10766-005-6466-x.

[37] R. Govindarajan, H. Yang, J. Amaral, C. Zhang, and G. Gao, “Minimum
register instruction sequencing to reduce register spills in out-of-order is-
sue superscalar architectures,” IEEE Transactions on Computers, vol. 52,
no. 1, pp. 4–20, 2003, doi:10.1109/TC.2003.1159750.

