Congestion Control for High-speed Extremely Shallow-buffered Data Center Networks

Kai Chen
July 4, 2017 @ SJTU
Data centers around the world

Google’s worldwide DC map

Microsoft’s DC in Dublin, Ireland

Facebook DC interior

Global Microsoft Azure DC Footprint
Data Center Network (DCN)
Data Center Applications

• Network Requirements
 – Desire **low latency** for short messages
 – Desire **high throughput** for large flows

The challenge is to achieve both goals simultaneously
Tension Between Requirements (From buffer’s perspective)

- High throughput: large switch buffer occupancies
- Low latency: small switch buffer occupancies
 - Reduce queueing delay
 - Reduce packet losses with large headroom

![Graph showing occupancy over time with headroom and size markers.]
What is current practice?

• Dynamic buffer allocation at switch
 – Reduce packet losses
What is current practice?

• Dynamic buffer allocation at switch
 – Reduce packet losses

• ECN-based transports (e.g., DCTCP Sigcomm’10)
What is current practice?

• Dynamic buffer allocation at switch
 – Reduce packet losses

• ECN-based transports (e.g., DCTCP Sigcomm’10)
 – Low buffer occupancies → Low queueing delay
 – Leave headroom → Reduce packet losses
 – $K = C \times RTT \times \lambda$ threshold → 100% throughput
What is current practice?

• Dynamic buffer allocation at switch
 – Reduce packet losses

• ECN-based transports (e.g., DCTCP Sigcomm’10)
 – Low buffer occupancies → Low queueing delay
 – Leave headroom → Reduce packet losses
 – $K = C \times RTT \times \lambda$ threshold → 100% throughput

Basic Buffer Requirement
Current Practice

• Dynamic buffer allocation at switch
 – Reduce packet losses

• ECN-based transports
 – Low buffer occupancies → Low queueing delay
 – Leave headroom → Reduce packet losses
 – $C \times RTT \times \lambda$ threshold → 100% throughput

Is current practice good enough? **No** with recent trends!
Recent Trends in DCNs

• The link speed scales up quickly
 – 100Gbps and beyond

• The switch buffer does not increase as expected
 – Reasons: cost, price, etc.

Buffer / port of Broadcom chips

1Gbps 10Gbps 40Gbps 100Gbps
80KB 192KB 384KB 512KB
Making it worse ...

- Switch buffer becomes increasingly shallow
 - Buffer per port per Gbps keeps decreasing
Observation

• More and more shallow switch buffer
 – Buffer per port per Gbps keeps decreasing

Extremely Shallow-buffered DCNs
Problems of Existing Solutions (1)

• Standard ECN configuration (current practice)
 – $C \times RTT \times \lambda$ per port for high throughput
Problems of Existing Solutions (1)

- Standard ECN configuration
 - $C \times RTT \times \lambda$ per port for high throughput
Problems of Existing Solutions (1)

• Standard ECN configuration
 – $C \times RTT \times \lambda$ per port for high throughput

![Diagram showing active ports](image)
Problems of Existing Solutions (1)

- Standard ECN configuration
 - $C \times RTT \times \lambda$ per port for high throughput
Problems of Existing Solutions (1)

• Standard ECN configuration
 – $C \times RTT \times \lambda$ per port for high throughput
Problems of Existing Solutions (1)

- Standard ECN configuration
 - $C \times RTT \times \lambda$ per port for high throughput
 - Excessive packet losses with many active ports

Example: Broadcom Tomhawk
- 16MB shared buffer for 32 x 100Gbps ports
- 1MB ($100 Gbps \times 80 \mu s$) per port buffering
- $\geq 50\%$ of ports are active \rightarrow buffer overflow
Problems of Existing Solutions (1)

- Standard ECN configuration
 - $C \times RTT \times \lambda$ per port for high throughput
 - Excessive packet losses with many active ports
Problems of Existing Solutions (2)

• Conservative ECN configuration
 – Leave headroom for low packet loss rate
Problems of Existing Solutions (2)

• Conservative ECN configuration
 – Leave headroom for low packet loss rate

![Diagram of Active Ports]
Problems of Existing Solutions (2)

• Conservative ECN configuration
 – Leave headroom for low packet loss rate
Problems of Existing Solutions (2)

• Conservative ECN configuration
 – Leave headroom for low packet loss rate
 – Significant throughput degradation with few active ports
Problems of Existing Solutions (2)

• Conservative ECN configuration
 – Leave headroom for low packet loss rate
 – Significant throughput degradation with few active ports
Summary of Problems

• Standard ECN configuration
 – $C \times RTT \times \lambda$ per port for high throughput
 – Excessive packet losses with many active ports

• Conservative ECN configuration
 – Leave headroom for low packet loss rate
 – Significant throughput degradation with few active ports
Design Goals

• High Throughput
• Low Packet Loss Rate
• When many ports are active?
 – Packet loss rate prioritized over throughput
• Readily-deployable
 – Legacy Network Stacks & Commodity Switch ASIC
Our Solution

• High Throughput
• Low Packet Loss Rate
• When many ports are active?
 – Packet loss rate prioritized over throughput
• Readily-deployable
 – Legacy Network Stacks & Commodity Switch ASIC

Buffer-aware Congestion Control
BCC Mechanisms

• End-host
 – Legacy ECN-based transports

• Switch
 – Per port standard ECN configuration
 – Shared buffer ECN/RED

OR
How BCC works?

Shared Buffer ECN/RED

Egress Ports

1
2
3
4
5
6
7
8
When few ports are active

- Per port standard ECN configuration ensures high throughput & low packet loss rate
When many ports are active

- Shared buffer ECN/RED achieves low packet loss rate at the cost of a small throughput loss
BCC in 1 Slide

• Few Active Ports → Abundant Buffer
 – Per port standard ECN configuration
 – Achieve high throughput & low packet loss rate

• Many Active Ports → Scarce Buffer
 – Shared buffer ECN/RED
 – Trade a little throughput for low packet loss rate

Buffer Aware
BCC in 1 Slide

• Few Active Ports → Abundant Buffer
 – Per port standard ECN configuration
 – Achieve high throughput & low packet loss rate

• Many Active Ports → Scarce Buffer
 – Shared buffer ECN/RED
 – Trade a little throughput for low packet loss rate

• One More ECN Configuration at the Switch
Testbed Validation

• Functionality Validation at Arista 7060CX-32S 100G switch

switch(config)# qos random-detect ecn global-buffer minimum-threshold 500 kbytes maximum-threshold 500 kbytes
Large Scale Simulations

- **Settings:**
 - 128-host 100Gbps spine-leaf fabric
 - Realistic web search traffic

- **Schemes compared**
 - Standard per port ECN/RED (K = 720KB)
 - Conservative per port ECN/RED (K = 200KB)

- **Metrics:**
 - Flow Completion Time (FCT) & Packet Loss Rate
Packet Loss Rate

BCC keeps low packet loss rate
99^{th} percentile FCT for Flows <100KB

BCC keeps low packet loss rate
Average FCT for Flows > 10MB

BCC only trades a little throughput
BCC Recap

• Abundant Buffer
 – Deliver high throughput & low packet loss rate

• Scarce Buffer
 – Trade a little throughput for low packet loss rate

• Readily-deployable
 – One more ECN configuration is enough
Thanks!